Java EE 7 and Cloud Computing

JavaEE7将为云环境提供增强功能,使基于JavaEE7的应用和服务更容易在私有或公共云中运行,并通过支持如多租户和弹性等特性作为服务交付。此外,JavaEE7作为云消费者和整合者,通过RESTful Web Services API和JBI标准,定位为云集成平台。同时,JavaEE7也作为云提供商,提供关键的云功能,如多租户支持、资源管理更新和编程模型改进。

JSR for Java EE 7

Java EE 7 will further enhance the Java EE platform for cloud environments. As a result, Java EE 7 based applications and products will be able to more easily operate on private or public clouds and deliver their functionality as a service with support for features such as multi-tenancy and elasticity (horizontal scaling).

Java EE 7 as a Cloud Consumer
As per the press release, the latest submission for Java EE 7 compliments the JSR 339, which is for the Java API for RESTful Web Services. This JSR will develop the next version of JAX-RS, the API for RESTful (Representational State Transfer) Web Services in the Java Platform.

Representational State Transfer (REST) is an architectural style for distributed hypermedia systems, such as the World Wide Web. Central to the RESTful architecture is the concept of resources identified by universal resource identifiers (URIs). These resources can be manipulated using a standard interface, such as HTTP, and information is exchanged using representations of these resources.

All the major cloud platform providers support RESTful Web Services and with JSR 339, Java EE is positioned to be a cloud consumer for all types of cloud-based resources.

Java EE 7 as a Cloud Integrator
JBI standardizes a way of assembling and binding the components making up an application.

JBI defines a container that can host components. Two kinds of components can be plugged into a JBI environment:

  1. Service engines provide logic in the environment, such as XSL (Extensible Stylesheet Language) transformation or BPEL (Business Process Execution Language) orchestration.
  2. Binding components are sort of "connectors" to external services or applications. They allow communication with various protocols, such as SOAP, REST, Java Message Service, or ebXML.

JBI is built on top of state-of-the-art SOA standards: service definitions are described in WSDL (Web Services Description Language) and components exchange XML messages in a document-oriented-model way.

Together with consuming APIs for REST-based Services and JBI, Java EE 7 can be positioned as a cloud integrator platform. However, we need to see the final specification on the exact options for cloud integration in Java EE 7.

Java EE 7 as a Cloud Provider
While the options for a cloud consumer and integrator do exist in Java EE in different forms in the earlier versions, the new add-ons to position Java EE 7 as a cloud provider are a major boost to the platform. The following are the expected major features in relation to Java EE 7 as a cloud provider.

  • The Java EE platform architecture to take into account the operational impact of the cloud, more specifically by defining new roles that arise in that model, such as a PaaS administrator.
  • The Java EE platform may also establish a set of constraints that applications that wish to take advantage of PaaS-specific features, such as multi-tenancy, may have to obey and provide a way for applications to identify themselves as designed for cloud environments.
  • All resource manager-related APIs, such as JPA, JDBC and JMS, will be updated to enable multi-tenancy. The programming model may be refined as well, for example, by introducing connectionless versions of the major APIs.
  • Java EE will define a descriptor for application metadata to enable developers to describe certain characteristics of their applications that are essential for the purpose of running them in a PaaS environment. These may include being multi tenancy-enabled, resources sharing, quality of service information, dependencies between applications.

内容概要:本文介绍了ENVI Deep Learning V1.0的操作教程,重点讲解了如何利用ENVI软件进行深度学习模型的训练与应用,以实现遥感图像中特定目标(如集装箱)的自动提取。教程涵盖了从数据准备、标签图像创建、模型初始化与训练,到执行分类及结果优化的完整流程,并介绍了精度评价与通过ENVI Modeler实现一键化建模的方法。系统基于TensorFlow框架,采用ENVINet5(U-Net变体)架构,支持通过点、线、面ROI或分类图生成标签数据,适用于多/高光谱影像的单一类别特征提取。; 适合人群:具备遥感图像处理基础,熟悉ENVI软件操作,从事地理信息、测绘、环境监测等相关领域的技术人员或研究人员,尤其是希望将深度学习技术应用于遥感目标识别的初学者与实践者。; 使用场景及目标:①在遥感影像中自动识别和提取特定地物目标(如车辆、建筑、道路、集装箱等);②掌握ENVI环境下深度学习模型的训练流程与关键参数设置(如Patch Size、Epochs、Class Weight等);③通过模型调优与结果反馈提升分类精度,实现高效自动化信息提取。; 阅读建议:建议结合实际遥感项目边学边练,重点关注标签数据制作、模型参数配置与结果后处理环节,充分利用ENVI Modeler进行自动化建模与参数优化,同时注意软硬件环境(特别是NVIDIA GPU)的配置要求以保障训练效率。
内容概要:本文系统阐述了企业新闻发稿在生成式引擎优化(GEO)时代下的全渠道策略与效果评估体系,涵盖当前企业传播面临的预算、资源、内容与效果评估四大挑战,并深入分析2025年新闻发稿行业五大趋势,包括AI驱动的智能化转型、精准化传播、首发内容价值提升、内容资产化及数据可视化。文章重点解析央媒、地方官媒、综合门户和自媒体四类媒体资源的特性、传播优势与发稿策略,提出基于内容适配性、时间节奏、话题设计的策略制定方法,并构建涵盖品牌价值、销售转化与GEO优化的多维评估框架。此外,结合“传声港”工具实操指南,提供AI智能投放、效果监测、自媒体管理与舆情应对的全流程解决方案,并针对科技、消费、B2B、区域品牌四大行业推出定制化发稿方案。; 适合人群:企业市场/公关负责人、品牌传播管理者、数字营销从业者及中小企业决策者,具备一定媒体传播经验并希望提升发稿效率与ROI的专业人士。; 使用场景及目标:①制定科学的新闻发稿策略,实现从“流量思维”向“价值思维”转型;②构建央媒定调、门户扩散、自媒体互动的立体化传播矩阵;③利用AI工具实现精准投放与GEO优化,提升品牌在AI搜索中的权威性与可见性;④通过数据驱动评估体系量化品牌影响力与销售转化效果。; 阅读建议:建议结合文中提供的实操清单、案例分析与工具指南进行系统学习,重点关注媒体适配性策略与GEO评估指标,在实际发稿中分阶段试点“AI+全渠道”组合策略,并定期复盘优化,以实现品牌传播的长期复利效应。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值