import numpy as np
A = np.array([[1,2],[3,4],[5,6]]) #A的shape为(3,2)
B = np.array([[7],[8]]) #B的shape为(2,1)
np.dot(A,B) #A*B的shape为(3,2)*(2,1)为(3,1)
输出为
array([[23], [53], [83]])
import numpy as np
A = np.array([[1,2],[3,4],[5,6]]) #A的shape为(3,2)
B = np.array([7,8]) #B的shape为(2,)
np.dot(A,B) #A*B的shape为(3,2)*(2,)为(3,),即A*B为一维数组
输出为
array([23, 53, 83])
import numpy as np
A = np.array([[1,2,3],[4,5,6]]) #A的shape为(2,3)
B = np.array([7,8]) #B的shape为(2,)
np.dot(B,A) #B*A的shape为(2,)*(2,3)为(3,),即B*A为一维数组
输出为
array([39, 54, 69])
python numpy中 shape(5,) 和shape(1,5) 的区别_一年又半的博客-优快云博客
(3,)转化为(1,3)
x = np.array([1,2,3])
print(x.shape)
y = np.array([x])
print(y.shape)
输出为
(3,) (1, 3)