适用对象
体素网格滤波器用来对点云进行降采样。
如果使用高分辨率相机等设备对点云进行采集,往往点云会较为密集。过多的点云数量会对后续分割工作带来困难。体素网格滤波器可以达到向下采样同时不破坏点云本身几何结构的功能。点云几何结构不仅是宏观的几何外形,也包括其微观的排列方式,比如横向相似的尺寸,纵向相同的距离。随机下采样虽然效率比体素网格滤波器高,但会破坏点云微观结构。
工作原理
体素的概念类似于像素,像素是二维的一个个点,而体素则是三维的一个个小空间。在输入点云数据上创建一个个3D体素网格(将体素网格视为一组空间中的微小3D小空间)。 然后,在每个体素中,所有存在的点将用它们的质心近似。 这种方法比用体素的中心直接代替它们要慢一些,但它可以更准确地保持宏观的几何外形。
PCL核心代码实现
pcl::VoxelGrid<pcl::PCLPointCloud2> sor; //创建体素滤波器对象
sor.setInputCloud (cloud); //设置输入的点云
sor.setLeafSize (0.01f, 0.01f, 0.01f); //设置体素大小为5cm*5cm*5cm
sor.filter (*cloud_filtered); //执行滤波
完整代码:
#include <iostream>
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/filters/voxel_grid.h>
int main (int argc, char** argv)
{
pcl::PCLPointCloud2::Ptr cloud (new pcl::PCLPointCloud2 ());
pcl::PCLPointCloud2::Ptr cloud_filtered (new pcl::PCLPointCloud2 ());
// Fill in the cloud data
pcl::PCDReader reader;
// Replace the path below with the path where you saved your file
reader.read ("table_scene_lms400.pcd", *cloud); // Remember to download the file first!
std::cerr << "PointCloud before filtering: " << cloud->width * cloud->height
<< " data points (" << pcl::getFieldsList (*cloud) << ").";
// Create the filtering object
pcl::VoxelGrid<pcl::PCLPointCloud2> sor;
sor.setInputCloud (cloud);
sor.setLeafSize (0.01f, 0.01f, 0.01f);
sor.filter (*cloud_filtered);
std::cerr << "PointCloud after filtering: " << cloud_filtered->width * cloud_filtered->height
<< " data points (" << pcl::getFieldsList (*cloud_filtered) << ").";
pcl::PCDWriter writer;
writer.write ("table_scene_lms400_downsampled.pcd", *cloud_filtered,
Eigen::Vector4f::Zero (), Eigen::Quaternionf::Identity (), false);
return (0);
}
测试的时候,需要先下载table_scene_lms400.pcd