Android OpenGL图像绘制支持多格式

部署运行你感兴趣的模型镜像

以下是基于OpenGL ES 3.0的Android图像绘制实现方案,支持灰度图、RGB、YUV420和YUYV格式。核心思路是通过多纹理绑定和着色器转换处理不同格式,实现高效GPU渲染。

整体实现步骤

  1. 创建GLSurfaceView:作为OpenGL渲染容器
  2. 自定义Renderer:实现GLSurfaceView.Renderer接口
  3. 多纹理管理:根据格式创建1-3个纹理
  4. 着色器转换:在片段着色器中完成格式转换

核心代码实现

  1. MyGLRenderer.java
package com.example.openglimaging;

import android.opengl.GLES30;
import android.opengl.GLSurfaceView;
import android.opengl.Matrix;
import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.nio.FloatBuffer;
import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10;

public class MyGLRenderer implements GLSurfaceView.Renderer {
    
    // 格式常量
    public static final int FORMAT_GRAY = 0;
    public static final int FORMAT_RGB = 1;
    public static final int FORMAT_YUV420 = 2;
    public static final int FORMAT_YUYV = 3;
    
    // 顶点和纹理坐标
    private static final float[] VERTEX_COORDS = {
        -1.0f,  1.0f, 0.0f,  // 左上
        -1.0f, -1.0f, 0.0f,  // 左下
         1.0f,  1.0f, 0.0f,  // 右上
         1.0f, -1.0f, 0.0f   // 右下
    };
    private static final float[] TEX_COORDS = {
        0.0f, 0.0f,  // 左下
        0.0f, 1.0f,  // 左上
        1.0f, 0.0f,  // 右下
        1.0f, 1.0f   // 右上
    };
    
    private FloatBuffer vertexBuffer, texCoordBuffer;
    private int program;
    private int[] textures = new int[3]; // 最多3个纹理
    private int uFormatLocation;
    
    // 图像参数
    private ByteBuffer imageBuffer;
    private int imageWidth, imageHeight;
    private int imageFormat = FORMAT_RGB;
    
    // 投影矩阵
    private final float[] mvpMatrix = new float[16];
    private int uMVPMatrixLocation;

    public MyGLRenderer() {
        // 初始化顶点缓冲区
        vertexBuffer = ByteBuffer.allocateDirect(VERTEX_COORDS.length * 4)
            .order(ByteOrder.nativeOrder())
            .asFloatBuffer();
        vertexBuffer.put(VERTEX_COORDS).position(0);
        
        // 初始化纹理坐标缓冲区
        texCoordBuffer = ByteBuffer.allocateDirect(TEX_COORDS.length * 4)
            .order(ByteOrder.nativeOrder())
            .asFloatBuffer();
        texCoordBuffer.put(TEX_COORDS).position(0);
    }
    
    @Override
    public void onSurfaceCreated(GL10 gl, EGLConfig config) {
        // 设置背景色
        GLES30.glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
        
        // 编译着色器
        int vertexShader = loadShader(GLES30.GL_VERTEX_SHADER, VERTEX_SHADER_CODE);
        int fragmentShader = loadShader(GLES30.GL_FRAGMENT_SHADER, FRAGMENT_SHADER_CODE);
        program = GLES30.glCreateProgram();
        GLES30.glAttachShader(program, vertexShader);
        GLES30.glAttachShader(program, fragmentShader);
        GLES30.glLinkProgram(program);
        GLES30.glUseProgram(program);
        
        // 获取uniform位置
        uMVPMatrixLocation = GLES30.glGetUniformLocation(program, "uMVPMatrix");
        uFormatLocation = GLES30.glGetUniformLocation(program, "uFormat");
        
        // 获取纹理位置
        int tex0Location = GLES30.glGetUniformLocation(program, "uTexture0");
        int tex1Location = GLES30.glGetUniformLocation(program, "uTexture1");
        int tex2Location = GLES30.glGetUniformLocation(program, "uTexture2");
        
        // 设置纹理单元
        GLES30.glUniform1i(tex0Location, 0);
        GLES30.glUniform1i(tex1Location, 1);
        GLES30.glUniform1i(tex2Location, 2);
        
        // 创建纹理
        GLES30.glGenTextures(3, textures, 0);
        for (int i = 0; i < 3; i++) {
            GLES30.glBindTexture(GLES30.GL_TEXTURE_2D, textures[i]);
            // 设置纹理参数
            GLES30.glTexParameteri(GLES30.GL_TEXTURE_2D, GLES30.GL_TEXTURE_MIN_FILTER, GLES30.GL_LINEAR);
            GLES30.glTexParameteri(GLES30.GL_TEXTURE_2D, GLES30.GL_TEXTURE_MAG_FILTER, GLES30.GL_LINEAR);
            GLES30.glTexParameteri(GLES30.GL_TEXTURE_2D, GLES30.GL_TEXTURE_WRAP_S, GLES30.GL_CLAMP_TO_EDGE);
            GLES30.glTexParameteri(GLES30.GL_TEXTURE_2D, GLES30.GL_TEXTURE_WRAP_T, GLES30.GL_CLAMP_TO_EDGE);
        }
        
        // 初始化矩阵
        Matrix.setIdentityM(mvpMatrix, 0);
    }
    
    @Override
    public void onSurfaceChanged(GL10 gl, int width, int height) {
        GLES30.glViewport(0, 0, width, height);
        // 更新投影矩阵(这里使用正交投影)
        Matrix.orthoM(mvpMatrix, 0, -1, 1, -1, 1, -1, 1);
    }
    
    @Override
    public void onDrawFrame(GL10 gl) {
        GLES30.glClear(GLES30.GL_COLOR_BUFFER_BIT);
        
        // 传递MVP矩阵
        GLES30.glUniformMatrix4fv(uMVPMatrixLocation, 1, false, mvpMatrix, 0);
        
        // 传递格式
        GLES30.glUniform1i(uFormatLocation, imageFormat);
        
        // 绑定顶点坐标
        int aPosition = GLES30.glGetAttribLocation(program, "aPosition");
        GLES30.glEnableVertexAttribArray(aPosition);
        GLES30.glVertexAttribPointer(aPosition, 3, GLES30.GL_FLOAT, false, 0, vertexBuffer);
        
        // 绑定纹理坐标
        int aTexCoord = GLES30.glGetAttribLocation(program, "aTexCoord");
        GLES30.glEnableVertexAttribArray(aTexCoord);
        GLES30.glVertexAttribPointer(aTexCoord, 2, GLES30.GL_FLOAT, false, 0, texCoordBuffer);
        
        // 绑定纹理数据
        bindTextureData();
        
        // 绘制
        GLES30.glDrawArrays(GLES30.GL_TRIANGLE_STRIP, 0, 4);
        
        // 禁用顶点数组
        GLES30.glDisableVertexAttribArray(aPosition);
        GLES30.glDisableVertexAttribArray(aTexCoord);
    }
    
    // 更新图像数据
    public void updateImage(byte[] data, int width, int height, int format) {
        if (data == null) return;
        
        imageWidth = width;
        imageHeight = height;
        imageFormat = format;
        imageBuffer = ByteBuffer.allocateDirect(data.length);
        imageBuffer.put(data).position(0);
    }
    
    // 根据格式绑定纹理
    private void bindTextureData() {
        if (imageBuffer == null) return;
        
        switch (imageFormat) {
            case FORMAT_GRAY:
                bindGrayTexture();
                break;
            case FORMAT_RGB:
                bindRGBTexture();
                break;
            case FORMAT_YUV420:
                bindYUV420Texture();
                break;
            case FORMAT_YUYV:
                bindYUYVTexture();
                break;
        }
    }
    
    private void bindGrayTexture() {
        GLES30.glActiveTexture(GLES30.GL_TEXTURE0);
        GLES30.glBindTexture(GLES30.GL_TEXTURE_2D, textures[0]);
        GLES30.glTexImage2D(GLES30.GL_TEXTURE_2D, 0, GLES30.GL_LUMINANCE, 
                imageWidth, imageHeight, 0, 
                GLES30.GL_LUMINANCE, GLES30.GL_UNSIGNED_BYTE, imageBuffer);
    }
    
    private void bindRGBTexture() {
        GLES30.glActiveTexture(GLES30.GL_TEXTURE0);
        GLES30.glBindTexture(GLES30.GL_TEXTURE_2D, textures[0]);
        GLES30.glTexImage2D(GLES30.GL_TEXTURE_2D, 0, GLES30.GL_RGB, 
                imageWidth, imageHeight, 0, 
                GLES30.GL_RGB, GLES30.GL_UNSIGNED_BYTE, imageBuffer);
    }
    
    private void bindYUV420Texture() {
        // Y分量
        GLES30.glActiveTexture(GLES30.GL_TEXTURE0);
        GLES30.glBindTexture(GLES30.GL_TEXTURE_2D, textures[0]);
        GLES30.glTexImage2D(GLES30.GL_TEXTURE_2D, 0, GLES30.GL_LUMINANCE, 
                imageWidth, imageHeight, 0, 
                GLES30.GL_LUMINANCE, GLES30.GL_UNSIGNED_BYTE, imageBuffer);
        
        // U分量 (宽度高度减半)
        int uvSize = imageWidth * imageHeight / 4;
        ByteBuffer uBuffer = ByteBuffer.allocateDirect(uvSize);
        imageBuffer.position(imageWidth * imageHeight);
        for (int i = 0; i < uvSize; i++) {
            uBuffer.put(imageBuffer.get());
        }
        uBuffer.position(0);
        
        GLES30.glActiveTexture(GLES30.GL_TEXTURE1);
        GLES30.glBindTexture(GLES30.GL_TEXTURE_2D, textures[1]);
        GLES30.glTexImage2D(GLES30.GL_TEXTURE_2D, 0, GLES30.GL_LUMINANCE, 
                imageWidth/2, imageHeight/2, 0, 
                GLES30.GL_LUMINANCE, GLES30.GL_UNSIGNED_BYTE, uBuffer);
        
        // V分量
        ByteBuffer vBuffer = ByteBuffer.allocateDirect(uvSize);
        imageBuffer.position(imageWidth * imageHeight + uvSize);
        for (int i = 0; i < uvSize; i++) {
            vBuffer.put(imageBuffer.get());
        }
        vBuffer.position(0);
        
        GLES30.glActiveTexture(GLES30.GL_TEXTURE2);
        GLES30.glBindTexture(GLES30.GL_TEXTURE_2D, textures[2]);
        GLES30.glTexImage2D(GLES30.GL_TEXTURE_2D, 0, GLES30.GL_LUMINANCE, 
                imageWidth/2, imageHeight/2, 0, 
                GLES30.GL_LUMINANCE, GLES30.GL_UNSIGNED_BYTE, vBuffer);
    }
    
    private void bindYUYVTexture() {
        // 将YUYV数据作为RGBA纹理上传(每4字节表示两个像素)
        GLES30.glActiveTexture(GLES30.GL_TEXTURE0);
        GLES30.glBindTexture(GLES30.GL_TEXTURE_2D, textures[0]);
        GLES30.glTexImage2D(GLES30.GL_TEXTURE_2D, 0, GLES30.GL_RGBA, 
                imageWidth/2, imageHeight, 0, 
                GLES30.GL_RGBA, GLES30.GL_UNSIGNED_BYTE, imageBuffer);
    }
    
    // 加载着色器
    private int loadShader(int type, String shaderCode) {
        int shader = GLES30.glCreateShader(type);
        GLES30.glShaderSource(shader, shaderCode);
        GLES30.glCompileShader(shader);
        return shader;
    }
    
    // 着色器代码
    private static final String VERTEX_SHADER_CODE = 
        "#version 300 es\n" +
        "uniform mat4 uMVPMatrix;\n" +
        "layout(location=0) in vec4 aPosition;\n" +
        "layout(location=1) in vec2 aTexCoord;\n" +
        "out vec2 vTexCoord;\n" +
        "void main() {\n" +
        "    gl_Position = uMVPMatrix * aPosition;\n" +
        "    vTexCoord = aTexCoord;\n" +
        "}";
    
    private static final String FRAGMENT_SHADER_CODE = 
        "#version 300 es\n" +
        "precision mediump float;\n" +
        "uniform int uFormat;\n" +
        "uniform sampler2D uTexture0;\n" +  // 灰度/RGB/Y分量
        "uniform sampler2D uTexture1;\n" +  // U分量(YUV420)
        "uniform sampler2D uTexture2;\n" +  // V分量(YUV420)
        "in vec2 vTexCoord;\n" +
        "out vec4 outColor;\n" +
        
        // 格式常量(与Java中定义一致)
        "#define FORMAT_GRAY 0\n" +
        "#define FORMAT_RGB 1\n" +
        "#define FORMAT_YUV420 2\n" +
        "#define FORMAT_YUYV 3\n" +
        
        "vec4 yuvToRgb(float y, float u, float v) {\n" +
        "    // YUV转RGB公式(BT.601标准)\n" +
        "    y = 1.1643*(y - 0.0625);\n" +
        "    u = u - 0.5;\n" +
        "    v = v - 0.5;\n" +
        "    return vec4(\n" +
        "        clamp(y + 1.5958*v, 0.0, 1.0),\n" +
        "        clamp(y - 0.39173*u - 0.81290*v, 0.0, 1.0),\n" +
        "        clamp(y + 2.017*u, 0.0, 1.0),\n" +
        "        1.0\n" +
        "    );\n" +
        "}\n" +
        
        "vec4 processYUYV() {\n" +
        "    // 计算实际采样位置(纹理宽度是原图一半)\n" +
        "    vec2 realCoord = vec2(vTexCoord.x * 2.0, vTexCoord.y);\n" +
        "    \n" +
        "    // 采样RGBA纹理(每个纹素包含两个像素的数据)\n" +
        "    vec4 yuyv = texture(uTexture0, vec2(realCoord.x * 0.5, realCoord.y));\n" +
        "    \n" +
        "    float y, u, v;\n" +
        "    if (fract(realCoord.x) < 0.5) {\n" +  // 左像素
        "        y = yuyv.r;\n" +
        "        u = yuyv.g;\n" +
        "        v = yuyv.a;\n" +
        "    } else { // 右像素\n" +
        "        y = yuyv.b;\n" +
        "        u = yuyv.g;\n" +
        "        v = yuyv.a;\n" +
        "    }\n" +
        "    return yuvToRgb(y, u, v);\n" +
        "}\n" +
        
        "void main() {\n" +
        "    switch(uFormat) {\n" +
        "        case FORMAT_GRAY:\n" +
        "            float gray = texture(uTexture0, vTexCoord).r;\n" +
        "            outColor = vec4(gray, gray, gray, 1.0);\n" +
        "            break;\n" +
        "            \n" +
        "        case FORMAT_RGB:\n" +
        "            outColor = texture(uTexture0, vTexCoord);\n" +
        "            break;\n" +
        "            \n" +
        "        case FORMAT_BGR:\n" +
        "            vec4 bgrColor = texture(uTexture0, vTexCoord);\n" +
        "            outColor = vec4(bgrColor.b, bgrColor.g, bgrColor.r, 1.0);\n" +
        "            break;\n" +
        "            \n" +
        "        case FORMAT_YUV420:\n" +
        "            float y = texture(uTexture0, vTexCoord).r;\n" +
        "            float u = texture(uTexture1, vTexCoord).r;\n" +
        "            float v = texture(uTexture2, vTexCoord).r;\n" +
        "            outColor = yuvToRgb(y, u, v);\n" +
        "            break;\n" +
        "            \n" +
        "        case FORMAT_YUYV:\n" +
        "            outColor = processYUYV();\n" +
        "            break;\n" +
        "            \n" +
        "        default:\n" + // 默认显示红色
        "            outColor = vec4(1.0, 0.0, 0.0, 1.0);\n" +
        "    }\n" +
        "}";
}

  1. 使用示例
package com.example.openglimaging;

import android.opengl.GLSurfaceView;
import android.os.Bundle;
import androidx.appcompat.app.AppCompatActivity;

public class MainActivity extends AppCompatActivity {

    private GLSurfaceView glSurfaceView;
    private MyGLRenderer renderer;

    @Override
    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        
        // 创建OpenGL ES 3.0上下文
        glSurfaceView = new GLSurfaceView(this);
        glSurfaceView.setEGLContextClientVersion(3);
        
        renderer = new MyGLRenderer();
        glSurfaceView.setRenderer(renderer);
        
        setContentView(glSurfaceView);
    }

    @Override
    protected void onPause() {
        super.onPause();
        glSurfaceView.onPause();
    }

    @Override
    protected void onResume() {
        super.onResume();
        glSurfaceView.onResume();
    }
    
    // 更新图像数据接口
    public void updateImage(byte[] data, int width, int height, int format) {
        renderer.updateImage(data, width, height, format);
        glSurfaceView.requestRender(); // 请求重绘
    }
}

关键点说明

  • 多格式支持:
    1. 灰度图:使用单纹理的Luminance格式
    2. RGB:标准RGB三通道纹理
    3. YUV420:分离为三个纹理(Y、U、V平面)
    4. YUYV:作为RGBA纹理上传(每4字节表示两个像素)
  • 性能优化:
    1. 使用ByteBuffer避免数据拷贝
    2. 在GPU端完成YUV转换
    3. 纹理使用GL_LINEAR过滤和CLAMP_TO_EDGE环绕模式
  • 着色器处理:
    1. 根据uFormat统一变量切换处理逻辑
    2. YUV420使用三个独立的纹理采样器
    3. YUYV采用奇偶像素分离算法
  • 内存管理:
    1. 在updateImage中更新图像数据
    2. 请求重绘requestRender()

您可能感兴趣的与本文相关的镜像

Wan2.2-I2V-A14B

Wan2.2-I2V-A14B

图生视频
Wan2.2

Wan2.2是由通义万相开源高效文本到视频生成模型,是有​50亿参数的轻量级视频生成模型,专为快速内容创作优化。支持480P视频生成,具备优秀的时序连贯性和运动推理能力

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

菠萝加点糖

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值