Problem Description
Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
Input
The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and
1000).
Output
For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end
position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.
Sample Input
2 5 6 -1 5 4 -7 7 0 6 -1 1 -6 7 -5
Sample Output
Case 1: 14 1 4 Case 2: 7 1 6简单的动态规划,思路不好想。。 但是如果知道大体思路的话就很好理解了。。 代码: #include<stdio.h> #include<string.h> int main(){ int i,n,m,j,k,t; int num[100010]; int max; int sum,temp,temp1,temp2,Case=1; scanf("%d",&n); while(n--){ memset(num,0,sizeof(num)); max=-9999; sum=0; temp=1; temp1=temp2=0; scanf("%d",&m); for(i=1;i<=m;i++){ scanf("%d",&num[i]); sum+=num[i]; if(sum>max) { max=sum; //寻找最大值 temp1=temp; temp2=i; } if(sum<0){ //当结果为0时,归0,从下一个数字开始 sum=0; temp=i+1; } } printf("Case %d:\n",Case++); printf("%d %d %d\n",max,temp1,temp2); if(n!=0) printf("\n"); } return 0; }