Opencv C++ 调用 tensorflow 模型、caffe模型

C++ Opencv 部署模型

调用 TensorFlow 模型

重要参考链接:

  1. 使用VS2015新建 空项目

  2. 配置项目的包含目录,库目录和附加依赖项
    配置截图

  3. 新建源文件 main.cpp,内容如下:

    #include<opencv2\opencv.hpp>
    #include<opencv2\dnn.hpp>
    #include <iostream>
    #include<map>
    #include<string>
    #include<time.h>
    
    using namespace std;
    using namespace cv;
    
    
    const char* classNames[]= {
         "background", "person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light",
    "fire hydrant", "background", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow", "elephant", "bear", "zebra", "giraffe", "background", "backpack",
    "umbrella", "background", "background", "handbag", "tie", "suitcase", "frisbee","skis", "snowboard", "sports ball", "kite", "baseball bat","baseball glove", "skateboard", "surfboard", "tennis racket",
    "bottle", "background", "wine glass", "cup", "fork", "knife", "spoon","bowl", "banana",  "apple", "sandwich", "orange","broccoli", "carrot", "hot dog",  "pizza", "donut",
    "cake", "chair", "couch", "potted plant", "bed", "background", "dining table", "background", "background", "toilet", "background","tv", "laptop", "mouse", "remote", "keyboard",
    "cell phone", "microwave", "oven", "toaster", "sink", "refrigerator", "background","book", "clock", "vase", "scissors","teddy bear", "hair drier", "toothbrush"};
    
    int main() 
    {
         
    	String weights = "models/frozen_inference_graph.pb";
    	String prototxt = "models/ssd_mobilenet_v1_coco.pbtxt";
    	const size_t width = 300;
    	const size_t height = 300;
    
    	VideoCapture capture;
    	capture.open(0);
    	namedWindow("input", CV_WINDOW_AUTOSIZE);
    	int w = capture.get(CAP_PROP_FRAME_WIDTH);
    	int h = capture.get(CAP_PROP_FRAME_HEIGHT);
    
    	printf("frame width : %d, frame height : %d", w, h);
    
    	// set up net
    	dnn::Net net = cv::dnn::readNetFromTensorflow(weights, prototxt);
    
    	Mat frame;
    	/*
    	while (1)	// 模式1:测试单张图像
    	{
    		frame = imread("models/car.jpg");
    		imshow("input", frame);
    	*/
    
    	while (capture.read(frame))		// 模式2:调用摄像头
    	{
         
    
    		//预测
    		cv::Mat inputblob = cv::dnn::blobFromImage(frame, 1. / 255, Size(width, height));
    		net.setInput(inputblob);
    		Mat output = net.forward();
    
    		//检测
    		Mat detectionMat(output.size[2], output.size[3], CV_32F, output.ptr<float>());
    		float confidence_threshold = 0.5;
    		for (int i = 0; i < detectionMat.rows; i++) {
         
    			float confidence = detectionMat.at<float>(i, 2);
    			if (confidence > confidence_threshold) {
         
    				size_t objIndex = (size_t)(detectionMat.at<float>(i, 1));
    				float tl_x = detectionMat.at<float>(i, 3) * frame.cols;
    				float tl_y = detectionMat.at<float>(i, 4) * frame.rows;
    				float br_x = detectionMat.at<float>(i, 5) * frame.cols;
    				float br_y = detectionMat.at<float>(i, 6) * frame.rows;
    
    				Rect object_box((int)tl_x, (int)tl_y, (int)(br_x - tl_x), (int)(br_y - tl_y));
    				rectangle(frame, object_box, Scalar(0, 255, 0), 2, 8, 0);
    				putText(frame, format("%s", classNames[objIndex
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值