- 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
- 🍖 原作者:K同学啊
理论知识
InceptionV3版本是2015年发布的,InceptionV1的第三个版本。
V3版本的特点如下:
- 更深层的网络:具有48层卷积层,这使得网络可以提取更多层次的特征。
- Factorized Convolution(分解卷积):使用分解卷积,将大卷积核替换为多个小的卷积核,进一步降低了参数量,减少了计算的复杂度,保持良好的性能
- 使用了BatchNormalization:V3版本在每个卷积层后都加了BN层,使模型更容易收敛并提升泛化能力。BN层的使用可以减少Internal covariate shift (内部协变量偏移),提高模型的训练速度,提升模型的鲁棒性。
- 辅助分类器:V3版本引入了辅助分类器,在模型的中间引出一些特征构建辅助分类器,将辅助分类器的输出与主分类器的输出加权融合,得到最终的预测结果
- RMSProp优化器:V3版本的Inception使用了RMSProp优化器,可以自适应的调节学习率,使训练过程更加稳定,收敛更快。
模型结构
InceptionV1版本中,作者将卷积通过1x1卷积降维后进行大卷积核计算,降低了计算量。在InceptionV3版本中继续做了改进。
-
首先是将大核卷积改为多层小核卷积,比如把一个5x5的卷积变成两个3x3的卷积。虽然由一层变成了两层,但是一个5x5卷积的开销是1个3x3的2.78倍,所以这种改变仍有利于性能的提升。
-
其次是将NxN的卷积变为1xN + Nx1的两个卷积。3x3的卷积变成1x3 +3x1的卷积,可以节省33%的性能。
串行会让网络变的很深,可能会造成信息损失。因此InceptionV3采用了并行的拆解
最终模型的结构为:
模型实现
- 首先是InceptionA模块,和InceptionV1一样
class InceptionA(nn.Module):
def __init__(self, in_channels, pool_features):
super().__init__()
self.branch1x1 = BasicConv2d(in_channels, 64, kernel_size=1)
self.branch5x5_1 = BasicConv2d(in_channels, 48, kernel_size=1)
self.branch5x5_2 = BasicConv2d(48, 64, kernel_size=5, padding=2)
self.branch3x3_1 = BasicConv2d(in_channels, 64, kernel_size=1)
self.branch3x3_2 = BasicConv2d(64, 96, kernel_size=3, padding=1)
self.branch3x3_3 = BasicConv2d(96, 96, kernel_size=3, padding=1)
self.branch_pool = BasicConv2d(in_channels, pool_features, kernel_size=1)
def forward(self, x):
branch1x1 = self.branch1x1(x)
branch5x5 = self.branch5x5_1(x)
branch5x5 = self.branch5x5_2(branch5x5)
branch3x3 = self.branch3x3_1(x)
branch3x3 = self.branch3x3_2(branch3x3)
branch3x3 = self.branch3x3_3(branch3x3)
branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
branch_pool = self.branch_pool(branch_pool)
outputs = [branch1x1, branch5x5, branch3x3, branch_pool]
return torch.cat(outputs, 1)
- 然后是InceptionB模块,串行拆分大卷积核
class InceptionB(nn.Module):
def __init__(self, in_channels, channels_7x7):
super().__init__()
self.branch1x1 = BasicConv2d(in_channels, 192, kernel_size=1)
c7 = channels_7x7
self.branch7x7_1 = BasicConv2d(in_channels, c7, kernel_size=1)
self.branch7x7_2 = BasicConv2d(c7, c7, kernel_size=(1, 7), padding=(0, 3))
self.branch7x7_3 = BasicConv2d(c7, 192, kernel_size=(7, 1), padding=(3, 0))
self.branch7x7dbl_1 = BasicConv2d(in_channels, c7, kernel_size=1)
self.branch7x7dbl_2 = BasicConv2d(c7, c7, kernel_size=(7, 1), padding=(3, 0))
self.branch7x7dbl_3 = BasicConv2d(c7, c7, kernel_size=(1, 7), padding=(0, 3))
self.branch7x7dbl_4 = BasicConv2d(c7, c7, kernel_size=(7, 1), padding=(3, 0))
self.branch7x7dbl_5 = BasicConv2d(c7, 192, kernel_size=(1, 7), padding=(0, 3))
self.branch_pool = BasicConv2d(in_channels, 192, kernel_size=1)
def forward(self, x):
branch1x1 = self.branch1x1(x)
branch7x7 = self.branch7x7_1(x)
branch7x7 = self.branch7x7_2(branch7x7)
branch7x7 = self.branch7x7_3(branch7x7)
branch7x7dbl = self.branch7x7dbl_1(x)
branch7x7dbl = self.branch7x7dbl_2(branch7x7dbl)
branch7x7dbl = self.branch7x7dbl_3(branch7x7dbl)
branch7x7dbl = self.branch7x7dbl_4(branch7x7dbl)
branch7x7dbl = self.branch7x7dbl_5(branch7x7dbl)
branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
branch_pool = self.branch_pool(branch_pool)
outputs = [branch1x1, branch7x7, branch7x7dbl, branch_pool]
return torch.cat(outputs, 1)
- 然后是InceptionC,并行拆分大卷积核
class InceptionC(nn.Module):
def __init__(self, in_channels):
super().__init__()
self.branch1x1 = BasicConv2d(in_channels, 320, kernel_size=1)
self.branch3x3_1 = BasicConv2d(in_channels, 384, kernel_size=1)
self.branch3x3_2a = BasicConv2d(384, 384, kernel_size=(1, 3), padding=(0, 1))
self.branch3x3_2b = BasicConv2d(384, 384, kernel_size=(3, 1), padding=(1, 0))
self.branch3x3dbl_1 = BasicConv2d(in_channels, 448, kernel_size=1)
self.branch3x3dbl_2 = BasicConv2d(448, 384, kernel_size=3, padding=1)
self.branch3x3dbl_3a = BasicConv2d(384, 384, kernel_size=(1, 3), padding=(0, 1))
self.branch3x3dbl_3b = BasicConv2d(384, 384, kernel_size=(3, 1), padding=(1, 0))
self.branch_pool = BasicConv2d(in_channels, 192, kernel_size=1)
def forward(self, x):
branch1x1 = self.branch1x1(x)
branch3x3 = self.branch3x3_1(x)
branch3x3 = [self.branch3x3_2a(branch3x3), self.branch3x3_2b(branch3x3)]
branch3x3 = torch.cat(branch3x3, 1)
branch3x3dbl = self.branch3x3dbl_1(x)
branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
branch3x3dbl = [self.branch3x3dbl_3a(branch3x3dbl), self.branch3x3dbl_3b(branch3x3dbl)]
branch3x3dbl = torch.cat(branch3x3dbl, 1)
branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
branch_pool = self.branch_pool(branch_pool)
outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool]
return torch.cat(outputs, 1)
- 还有用于降维的Reduction模块
class ReductionA(nn.Module):
def __init__(self, in_channels):
super().__init__()
self.branch3x3 = BasicConv2d(in_channels, 384, kernel_size=3, stride=2)
self.branch3x3dbl_1 = BasicConv2d(in_channels, 64, kernel_size=1)
self.branch3x3dbl_2 = BasicConv2d(64, 96, kernel_size=3, padding=1)
self.branch3x3dbl_3 = BasicConv2d(96, 96, kernel_size=3, stride=2)
def forward(self, x):
branch3x3 = self.branch3x3(x)
branch3x3dbl = self.branch3x3dbl_1(x)
branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl)
branch_pool = F.max_pool2d(x, kernel_size=3, stride=2)
outputs = [branch3x3, branch3x3dbl, branch_pool]
return torch.cat(outputs, 1)
class ReductionB(nn.Module):
def __init__(self, in_channels):
super().__init__()
self.branch3x3_1 = BasicConv2d(in_channels, 192, kernel_size=1)
self.branch3x3_2 = BasicConv2d(192, 320, kernel_size=3, stride=2)
self.branch7x7x3_1 = BasicConv2d(in_channels, 192, kernel_size=1)
self.branch7x7x3_2 = BasicConv2d(192, 192