原文链接:
http://blog.youkuaiyun.com/gsky1986/article/details/46499529
问题
给你1个文件bigdata
,大小4663M,5亿个数,文件中的数据随机,如下一行一个整数:
<code class="hljs r has-numbering"><span class="hljs-number"></span></code><pre class="plain" name="code">1 6196302 2 3557681 3 6121580 4 2039345 5 2095006 6 1746773 7 7934312 8 2016371 9 7123302 10 8790171 11 2966901 12 ... 13 7005375
现在要对这个文件进行排序,怎么搞?
内部排序
先尝试内排,选2种排序方式:
3路快排:
<code class="hljs java has-numbering"><span class="hljs-keyword">private</span> <span class="hljs-keyword">final</span> <span class="hljs-keyword">int</span> cutoff = <span class="hljs-number">8</span>; <span class="hljs-keyword">public</span> <T> <span class="hljs-keyword">void</span> <span class="hljs-title">perform</span>(Comparable<T>[] a) { perform(a,<span class="hljs-number">0</span>,a.length - <span class="hljs-number">1</span>); } <span class="hljs-keyword">private</span> <T> <span class="hljs-keyword">int</span> <span class="hljs-title">median3</span>(Comparable<T>[] a,<span class="hljs-keyword">int</span> x,<span class="hljs-keyword">int</span> y,<span class="hljs-keyword">int</span> z) { <span class="hljs-keyword">if</span>(lessThan(a[x],a[y])) { <span class="hljs-keyword">if</span>(lessThan(a[y],a[z])) { <span class="hljs-keyword">return</span> y; } <span class="hljs-keyword">else</span> <span class="hljs-keyword">if</span>(lessThan(a[x],a[z])) { <span class="hljs-keyword">return</span> z; }<span class="hljs-keyword">else</span> { <span class="hljs-keyword">return</span> x; } }<span class="hljs-keyword">else</span> { <span class="hljs-keyword">if</span>(lessThan(a[z],a[y])){ <span class="hljs-keyword">return</span> y; }<span class="hljs-keyword">else</span> <span class="hljs-keyword">if</span>(lessThan(a[z],a[x])) { <span class="hljs-keyword">return</span> z; }<span class="hljs-keyword">else</span> { <span class="hljs-keyword">return</span> x; } } } <span class="hljs-keyword">private</span> <T> <span class="hljs-keyword">void</span> <span class="hljs-title">perform</span>(Comparable<T>[] a,<span class="hljs-keyword">int</span> low,<span class="hljs-keyword">int</span> high) { <span class="hljs-keyword">int</span> n = high - low + <span class="hljs-number">1</span>; <span class="hljs-comment">//当序列非常小,用插入排序</span> <span class="hljs-keyword">if</span>(n <= cutoff) { InsertionSort insertionSort = SortFactory.createInsertionSort(); insertionSort.perform(a,low,high); <span class="hljs-comment">//当序列中小时,使用median3</span> }<span class="hljs-keyword">else</span> <span class="hljs-keyword">if</span>(n <= <span class="hljs-number">100</span>) { <span class="hljs-keyword">int</span> m = median3(a,low,low + (n >>> <span class="hljs-number">1</span>),high); exchange(a,m,low); <span class="hljs-comment">//当序列比较大时,使用ninther</span> }<span class="hljs-keyword">else</span> { <span class="hljs-keyword">int</span> gap = n >>> <span class="hljs-number">3</span>; <span class="hljs-keyword">int</span> m = low + (n >>> <span class="hljs-number">1</span>); <span class="hljs-keyword">int</span> m1 = median3(a,low,low + gap,low + (gap << <span class="hljs-number">1</span>)); <span class="hljs-keyword">int</span> m2 = median3(a,m - gap,m,m + gap); <span class="hljs-keyword">int</span> m3 = median3(a,high - (gap << <span class="hljs-number">1</span>),high - gap,high); <span class="hljs-keyword">int</span> ninther = median3(a,m1,m2,m3); exchange(a,ninther,low); } <span class="hljs-keyword">if</span>(high <= low) <span class="hljs-keyword">return</span>; <span class="hljs-comment">//lessThan</span> <span class="hljs-keyword">int</span> lt = low; <span class="hljs-comment">//greaterThan</span> <span class="hljs-keyword">int</span> gt = high; <span class="hljs-comment">//中心点</span> Comparable<T> pivot = a[low]; <span class="hljs-keyword">int</span> i = low + <span class="hljs-number">1</span>; <span class="hljs-comment">/* * 不变式: * a[low..lt-1] 小于pivot -> 前部(first) * a[lt..i-1] 等于 pivot -> 中部(middle) * a[gt+1..n-1] 大于 pivot -> 后部(final) * * a[i..gt] 待考察区域 */</span> <span class="hljs-keyword">while</span> (i <= gt) { <span class="hljs-keyword">if</span>(lessThan(a[i],pivot)) { <span class="hljs-comment">//i-> ,lt -></span> exchange(a,lt++,i++); }<span class="hljs-keyword">else</span> <span class="hljs-keyword">if</span>(lessThan(pivot,a[i])) { exchange(a,i,gt--); }<span class="hljs-keyword">else</span>{ i++; } } <span class="hljs-comment">// a[low..lt-1] < v = a[lt..gt] < a[gt+1..high].</span> perform(a,low,lt - <span class="hljs-number">1</span>); perform(a,gt + <span class="hljs-number">1</span>,high); }</code>
归并排序:
<code class="hljs java has-numbering"> <span class="hljs-javadoc">/** * 小于等于这个值的时候,交给插入排序 */</span> <span class="hljs-keyword">private</span> <span class="hljs-keyword">final</span> <span class="hljs-keyword">int</span> cutoff = <span class="hljs-number">8</span>; <span class="hljs-javadoc">/** * 对给定的元素序列进行排序 * *<span class="hljs-javadoctag"> @param</span> a 给定元素序列 */</span> <span class="hljs-annotation">@Override</span> <span class="hljs-keyword">public</span> <T> <span class="hljs-keyword">void</span> <span class="hljs-title">perform</span>(Comparable<T>[] a) { Comparable<T>[] b = a.clone(); perform(b, a, <span class="hljs-number">0</span>, a.length - <span class="hljs-number">1</span>); } <span class="hljs-keyword">private</span> <T> <span class="hljs-keyword">void</span> <span class="hljs-title">perform</span>(Comparable<T>[] src,Comparable<T>[] dest,<span class="hljs-keyword">int</span> low,<span class="hljs-keyword">int</span> high) { <span class="hljs-keyword">if</span>(low >= high) <span class="hljs-keyword">return</span>; <span class="hljs-comment">//小于等于cutoff的时候,交给插入排序</span> <span class="hljs-keyword">if</span>(high - low <= cutoff) { SortFactory.createInsertionSort().perform(dest,low,high); <span class="hljs-keyword">return</span>; } <span class="hljs-keyword">int</span> mid = low + ((high - low) >>> <span class="hljs-number">1</span>); perform(dest,src,low,mid); perform(dest,src,mid + <span class="hljs-number">1</span>,high); <span class="hljs-comment">//考虑局部有序 src[mid] <= src[mid+1]</span> <span class="hljs-keyword">if</span>(lessThanOrEqual(src[mid],src[mid+<span class="hljs-number">1</span>])) { System.arraycopy(src,low,dest,low,high - low + <span class="hljs-number">1</span>); } <span class="hljs-comment">//src[low .. mid] + src[mid+1 .. high] -> dest[low .. high]</span> merge(src,dest,low,mid,high); } <span class="hljs-keyword">private</span> <T> <span class="hljs-keyword">void</span> <span class="hljs-title">merge</span>(Comparable<T>[] src,Comparable<T>[] dest,<span class="hljs-keyword">int</span> low,<span class="hljs-keyword">int</span> mid,<span class="hljs-keyword">int</span> high) { <span class="hljs-keyword">for</span>(<span class="hljs-keyword">int</span> i = low,v = low,w = mid + <span class="hljs-number">1</span>; i <= high; i++) { <span class="hljs-keyword">if</span>(w > high || v <= mid && lessThanOrEqual(src[v],src[w])) { dest[i] = src[v++]; }<span class="hljs-keyword">else</span> { dest[i] = src[w++]; } } }</code>
数据太多,递归太深 ->栈溢出?加大Xss?
数据太多,数组太长 -> OOM?加大Xmx?
耐心不足,没跑出来.而且要将这么大的文件读入内存,在堆中维护这么大个数据量,还有内排中不断的拷贝,对栈和堆都是很大的压力,不具备通用性。
sort命令来跑
<code class="hljs lasso has-numbering">sort <span class="hljs-attribute">-n</span> bigdata <span class="hljs-attribute">-o</span> bigdata<span class="hljs-built_in">.</span>sorted</code><ul class="pre-numbering" style="display: block;"><li>1</li></ul>
跑了多久呢?24分钟.
为什么这么慢?
粗略的看下我们的资源:
1. 内存
jvm-heap/stack,native-heap/stack,page-cache,block-buffer
2. 外存
swap + 磁盘数据量很大,函数调用很多,系统调用很多,内核/用户缓冲区拷贝很多,脏页回写很多,io-wait很高,io很繁忙,堆栈数据不断交换至swap,线程切换很多,每个环节的锁也很多.
总之,内存吃紧,问磁盘要空间,脏数据持久化过多导致cache频繁失效,引发大量回写,回写线程高,导致cpu大量时间用于上下文切换,一切,都很糟糕,所以24分钟不细看了,无法忍受.
位图法
<code class="hljs cs has-numbering"> <span class="hljs-keyword">private</span> BitSet bits; <span class="hljs-keyword">public</span> <span class="hljs-keyword">void</span> <span class="hljs-title">perform</span>( String largeFileName, <span class="hljs-keyword">int</span> total, String destLargeFileName, Castor<Integer> castor, <span class="hljs-keyword">int</span> readerBufferSize, <span class="hljs-keyword">int</span> writerBufferSize, boolean asc) throws IOException { System.<span class="hljs-keyword">out</span>.println(<span class="hljs-string">"BitmapSort Started."</span>); <span class="hljs-keyword">long</span> start = System.currentTimeMillis(); bits = <span class="hljs-keyword">new</span> BitSet(total); InputPart<Integer> largeIn = PartFactory.createCharBufferedInputPart(largeFileName, readerBufferSize); OutputPart<Integer> largeOut = PartFactory.createCharBufferedOutputPart(destLargeFileName, writerBufferSize); largeOut.delete(); Integer data; <span class="hljs-keyword">int</span> off = <span class="hljs-number">0</span>; <span class="hljs-keyword">try</span> { <span class="hljs-keyword">while</span> (<span class="hljs-keyword">true</span>) { data = largeIn.read(); <span class="hljs-keyword">if</span> (data == <span class="hljs-keyword">null</span>) <span class="hljs-keyword">break</span>; <span class="hljs-keyword">int</span> v = data; <span class="hljs-keyword">set</span>(v); off++; } largeIn.close(); <span class="hljs-keyword">int</span> size = bits.size(); System.<span class="hljs-keyword">out</span>.println(String.format(<span class="hljs-string">"lines : %d ,bits : %d"</span>, off, size)); <span class="hljs-keyword">if</span>(asc) { <span class="hljs-keyword">for</span> (<span class="hljs-keyword">int</span> i = <span class="hljs-number">0</span>; i < size; i++) { <span class="hljs-keyword">if</span> (<span class="hljs-keyword">get</span>(i)) { largeOut.write(i); } } }<span class="hljs-keyword">else</span> { <span class="hljs-keyword">for</span> (<span class="hljs-keyword">int</span> i = size - <span class="hljs-number">1</span>; i >= <span class="hljs-number">0</span>; i--) { <span class="hljs-keyword">if</span> (<span class="hljs-keyword">get</span>(i)) { largeOut.write(i); } } } largeOut.close(); <span class="hljs-keyword">long</span> stop = System.currentTimeMillis(); <span class="hljs-keyword">long</span> elapsed = stop - start; System.<span class="hljs-keyword">out</span>.println(String.format(<span class="hljs-string">"BitmapSort Completed.elapsed : %dms"</span>,elapsed)); }<span class="hljs-keyword">finally</span> { largeIn.close(); largeOut.close(); } } <span class="hljs-keyword">private</span> <span class="hljs-keyword">void</span> <span class="hljs-title">set</span>(<span class="hljs-keyword">int</span> i) { bits.<span class="hljs-keyword">set</span>(i); } <span class="hljs-keyword">private</span> boolean <span class="hljs-title">get</span>(<span class="hljs-keyword">int</span> v) { <span class="hljs-keyword">return</span> bits.<span class="hljs-keyword">get</span>(v); }</code>
nice!跑了190秒,3分来钟.
以核心内存4663M/32
大小的空间跑出这么个结果,而且大量时间在用于I/O,不错.
问题是,如果这个时候突然内存条坏了1、2根,或者只有极少的内存空间怎么搞?
外部排序
该外部排序上场了.
外部排序干嘛的?
- 内存极少的情况下,利用分治策略,利用外存保存中间结果,再用多路归并来排序;
- map-reduce的嫡系.
1.分
内存中维护一个极小的核心缓冲区memBuffer
,将大文件bigdata
按行读入,搜集到memBuffer
满或者大文件读完时,对memBuffer
中的数据调用内排进行排序,排序后将有序结果写入磁盘文件bigdata.xxx.part.sorted
.
循环利用memBuffer
直到大文件处理完毕,得到n个有序的磁盘文件:
2.合
现在有了n个有序的小文件,怎么合并成1个有序的大文件?
把所有小文件读入内存,然后内排?
(⊙o⊙)…
no!
利用如下原理进行归并排序:
我们举个简单的例子:
文件1:3,6,9
文件2:2,4,8
文件3:1,5,7第一回合:
文件1的最小值:3 , 排在文件1的第1行
文件2的最小值:2,排在文件2的第1行
文件3的最小值:1,排在文件3的第1行
那么,这3个文件中的最小值是:min(1,2,3) = 1
也就是说,最终大文件的当前最小值,是文件1、2、3的当前最小值的最小值,绕么?
上面拿出了最小值1,写入大文件.第二回合:
文件1的最小值:3 , 排在文件1的第1行
文件2的最小值:2,排在文件2的第1行
文件3的最小值:5,排在文件3的第2行
那么,这3个文件中的最小值是:min(5,2,3) = 2
将2写入大文件.也就是说,最小值属于哪个文件,那么就从哪个文件当中取下一行数据.(因为小文件内部有序,下一行数据代表了它当前的最小值)
最终的时间,跑了771秒,13分钟左右.
<code class="hljs r has-numbering">less bigdata.sorted.text <span class="hljs-keyword">...</span> <span class="hljs-number">9999966</span> <span class="hljs-number">9999967</span> <span class="hljs-number">9999968</span> <span class="hljs-number">9999969</span> <span class="hljs-number">9999970</span> <span class="hljs-number">9999971</span> <span class="hljs-number">9999972</span> <span class="hljs-number">9999973</span> <span class="hljs-number">9999974</span> <span class="hljs-number">9999975</span> <span class="hljs-number">9999976</span> <span class="hljs-number">9999977</span> <span class="hljs-number">9999978</span> <span class="hljs-keyword">...</span></code>
<ul class="pre-numbering" style="display: block;"><li>1</li><li>2</li><li>3</li><li>4</li></ul>
给你1个文件bigdata,大小4663M,5亿个数,文件中的数据随机,如下一行一个整数:
6196302
3557681
6121580
2039345
2095006
1746773
7934312
2016371
7123302
8790171
2966901
...
70053751
2
3
4
5
6
7
8
9
10
11
12
13
现在要对这个文件进行排序,怎么搞?
内部排序
先尝试内排,选2种排序方式:
3路快排:
private final int cutoff = 8;
public <T> void perform(Comparable<T>[] a) {
perform(a,0,a.length - 1);
}
private <T> int median3(Comparable<T>[] a,int x,int y,int z) {
if(lessThan(a[x],a[y])) {
if(lessThan(a[y],a[z])) {
return y;
}
else if(lessThan(a[x],a[z])) {
return z;
}else {
return x;
}
}else {
if(lessThan(a[z],a[y])){
return y;
}else if(lessThan(a[z],a[x])) {
return z;
}else {
return x;
}
}
}
private <T> void perform(Comparable<T>[] a,int low,int high) {
int n = high - low + 1;
//当序列非常小,用插入排序
if(n <= cutoff) {
InsertionSort insertionSort = SortFactory.createInsertionSort();
insertionSort.perform(a,low,high);
//当序列中小时,使用median3
}else if(n <= 100) {
int m = median3(a,low,low + (n >>> 1),high);
exchange(a,m,low);
//当序列比较大时,使用ninther
}else {
int gap = n >>> 3;
int m = low + (n >>> 1);
int m1 = median3(a,low,low + gap,low + (gap << 1));
int m2 = median3(a,m - gap,m,m + gap);
int m3 = median3(a,high - (gap << 1),high - gap,high);
int ninther = median3(a,m1,m2,m3);
exchange(a,ninther,low);
}
if(high <= low)
return;
//lessThan
int lt = low;
//greaterThan
int gt = high;
//中心点
Comparable<T> pivot = a[low];
int i = low + 1;
/*
* 不变式:
* a[low..lt-1] 小于pivot -> 前部(first)
* a[lt..i-1] 等于 pivot -> 中部(middle)
* a[gt+1..n-1] 大于 pivot -> 后部(final)
*
* a[i..gt] 待考察区域
*/
while (i <= gt) {
if(lessThan(a[i],pivot)) {
//i-> ,lt ->
exchange(a,lt++,i++);
}else if(lessThan(pivot,a[i])) {
exchange(a,i,gt--);
}else{
i++;
}
}
// a[low..lt-1] < v = a[lt..gt] < a[gt+1..high].
perform(a,low,lt - 1);
perform(a,gt + 1,high);
}1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
归并排序:
/**
* 小于等于这个值的时候,交给插入排序
*/
private final int cutoff = 8;
/**
* 对给定的元素序列进行排序
*
* @param a 给定元素序列
*/
@Override
public <T> void perform(Comparable<T>[] a) {
Comparable<T>[] b = a.clone();
perform(b, a, 0, a.length - 1);
}
private <T> void perform(Comparable<T>[] src,Comparable<T>[] dest,int low,int high) {
if(low >= high)
return;
//小于等于cutoff的时候,交给插入排序
if(high - low <= cutoff) {
SortFactory.createInsertionSort().perform(dest,low,high);
return;
}
int mid = low + ((high - low) >>> 1);
perform(dest,src,low,mid);
perform(dest,src,mid + 1,high);
//考虑局部有序 src[mid] <= src[mid+1]
if(lessThanOrEqual(src[mid],src[mid+1])) {
System.arraycopy(src,low,dest,low,high - low + 1);
}
//src[low .. mid] + src[mid+1 .. high] -> dest[low .. high]
merge(src,dest,low,mid,high);
}
private <T> void merge(Comparable<T>[] src,Comparable<T>[] dest,int low,int mid,int high) {
for(int i = low,v = low,w = mid + 1; i <= high; i++) {
if(w > high || v <= mid && lessThanOrEqual(src[v],src[w])) {
dest[i] = src[v++];
}else {
dest[i] = src[w++];
}
}
}1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
数据太多,递归太深 ->栈溢出?加大Xss?
数据太多,数组太长 -> OOM?加大Xmx?
耐心不足,没跑出来.而且要将这么大的文件读入内存,在堆中维护这么大个数据量,还有内排中不断的拷贝,对栈和堆都是很大的压力,不具备通用性。
sort命令来跑
sort -n bigdata -o bigdata.sorted1
跑了多久呢?24分钟.
为什么这么慢?
粗略的看下我们的资源:
1. 内存
jvm-heap/stack,native-heap/stack,page-cache,block-buffer
2. 外存
swap + 磁盘
数据量很大,函数调用很多,系统调用很多,内核/用户缓冲区拷贝很多,脏页回写很多,io-wait很高,io很繁忙,堆栈数据不断交换至swap,线程切换很多,每个环节的锁也很多.
总之,内存吃紧,问磁盘要空间,脏数据持久化过多导致cache频繁失效,引发大量回写,回写线程高,导致cpu大量时间用于上下文切换,一切,都很糟糕,所以24分钟不细看了,无法忍受.
位图法
private BitSet bits;
public void perform(
String largeFileName,
int total,
String destLargeFileName,
Castor<Integer> castor,
int readerBufferSize,
int writerBufferSize,
boolean asc) throws IOException {
System.out.println("BitmapSort Started.");
long start = System.currentTimeMillis();
bits = new BitSet(total);
InputPart<Integer> largeIn = PartFactory.createCharBufferedInputPart(largeFileName, readerBufferSize);
OutputPart<Integer> largeOut = PartFactory.createCharBufferedOutputPart(destLargeFileName, writerBufferSize);
largeOut.delete();
Integer data;
int off = 0;
try {
while (true) {
data = largeIn.read();
if (data == null)
break;
int v = data;
set(v);
off++;
}
largeIn.close();
int size = bits.size();
System.out.println(String.format("lines : %d ,bits : %d", off, size));
if(asc) {
for (int i = 0; i < size; i++) {
if (get(i)) {
largeOut.write(i);
}
}
}else {
for (int i = size - 1; i >= 0; i--) {
if (get(i)) {
largeOut.write(i);
}
}
}
largeOut.close();
long stop = System.currentTimeMillis();
long elapsed = stop - start;
System.out.println(String.format("BitmapSort Completed.elapsed : %dms",elapsed));
}finally {
largeIn.close();
largeOut.close();
}
}
private void set(int i) {
bits.set(i);
}
private boolean get(int v) {
return bits.get(v);
}1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
nice!跑了190秒,3分来钟.
以核心内存4663M/32大小的空间跑出这么个结果,而且大量时间在用于I/O,不错.
问题是,如果这个时候突然内存条坏了1、2根,或者只有极少的内存空间怎么搞?
外部排序
该外部排序上场了.
外部排序干嘛的?
1.内存极少的情况下,利用分治策略,利用外存保存中间结果,再用多路归并来排序;
2.map-reduce的嫡系.
这里写图片描述
这里写图片描述
1.分
内存中维护一个极小的核心缓冲区memBuffer,将大文件bigdata按行读入,搜集到memBuffer满或者大文件读完时,对memBuffer中的数据调用内排进行排序,排序后将有序结果写入磁盘文件bigdata.xxx.part.sorted.
循环利用memBuffer直到大文件处理完毕,得到n个有序的磁盘文件:
这里写图片描述
2.合
现在有了n个有序的小文件,怎么合并成1个有序的大文件?
把所有小文件读入内存,然后内排?
(⊙o⊙)…
no!
利用如下原理进行归并排序:
这里写图片描述
我们举个简单的例子:
文件1:3,6,9
文件2:2,4,8
文件3:1,5,7
第一回合:
文件1的最小值:3 , 排在文件1的第1行
文件2的最小值:2,排在文件2的第1行
文件3的最小值:1,排在文件3的第1行
那么,这3个文件中的最小值是:min(1,2,3) = 1
也就是说,最终大文件的当前最小值,是文件1、2、3的当前最小值的最小值,绕么?
上面拿出了最小值1,写入大文件.
第二回合:
文件1的最小值:3 , 排在文件1的第1行
文件2的最小值:2,排在文件2的第1行
文件3的最小值:5,排在文件3的第2行
那么,这3个文件中的最小值是:min(5,2,3) = 2
将2写入大文件.
也就是说,最小值属于哪个文件,那么就从哪个文件当中取下一行数据.(因为小文件内部有序,下一行数据代表了它当前的最小值)
最终的时间,跑了771秒,13分钟左右.
less bigdata.sorted.text
...
9999966
9999967
9999968
9999969
9999970
9999971
9999972
9999973
9999974
9999975
9999976
9999977
9999978
...1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16