在C#中,格式化输出可以使用索引占位符以及复合格式的占位符,可以不用关心后面参数是什么类型,使用起来非常方便,如下简单的示例:
Console.WriteLine("{2} {1} {0} {{{2}}}", "Hello, World!", 1, 8.8);
会输出:
8.8 1 Hello, World! {8.8}
规范可以参见:复合格式设置
在C语言标准库中使用的printf系列函数中,需要使用格式化字符串明确指定后面参数的类型,如果指定错误,可能会引发灾难! 那C语言,可以实现上述功能吗 ? 在C11泛型的加持下,使用关键字_Generic也可以实现上述功能了,下面笔者就一步步来实现,并且支持可以不指定索引,支持C标准格式化字符串。
一、实现效果
我们假定要实现的是printx和print,其使用的方式如下:
main.c:
#include "printx.h"
int main() {
char a = 'A';
unsigned char b = 130;
int age = 25;
unsigned int ui = 123456;
long l = 12345678;
unsigned ul = 123456789;
long long ll = 98761234567890;
unsigned long long ull = 9998761234567890;
float f = 2.71828F;
double pi = 3.14159;
const char* name = "Witton";
unsigned int hexv = 8192;
auto x = '\n';
printx("test\n");
printx("Name: {{{}}}, Age: {}\n", name, age);
printx("Age: {1}, Name: {}\n", name, age);
printx("Name: {0}, Age: {1}\n", name, age);
printx("Pi: {0:.2f}\n", pi);
printx("Hex: {0:#x}, Again: {0:#08x}\n", hexv);
printx("Swap order: {1}, {0}\n", "first", "second");
printx("Char: {0}\n", (char)'A');
printx("Repeat: {0} {0} {1:.1f} {}\n", age, pi, f);
printx("1:{} 2:{} 3:{} 4:{} 5:{}, 6:{}, 7:{}, 8:{}, 9:{}, 10:{}\n", name, a,
b, age, ui, l, ul, ll, ull, f);
print(name, a, b, age, ui, l, ul, ll, ull, (char)'\n');
return 0;
}
其运行结果为:
test
Name: {Witton}, Age: 25
Age: 25, Name: Witton
Name: Witton, Age: 25
Pi: 3.14
Hex: 0x2000, Again: 0x002000
Swap order: second, first
Char: A
Repeat: 25 25 3.1 25
1:Witton 2:A 3:130 4:25 5:123456, 6:12345678, 7:123456789, 8:98761234567890, 9:9998761234567890, 10:2.718280
Witton A 130 25 123456 12345678 123456789 98761234567890 9998761234567890

需要注意的是:C语言中字面字符的类型是int,而不是char,所以:
printx("Char: {0}\n", (char)'A');
中需要强制转换成char类型才能正常输出字母A。

二、统一类型
由于在调用的过程中传入的参数可能是各种数据类型,我们需要统一转换成一种自定义类型,在自定义类型中去标识实际的数据类型。
typedef enum {
T_UNKNOWN,
T_CHAR,
T_BYTE,
T_STRING,
T_BYTES,
T_INT,
T_UINT,
T_LONG,
T_ULONG,
T_LONGLONG,
T_ULONGLONG,
T_FLOAT,
T_DOUBLE,
} EDataType;
typedef struct {
EDataType type;
union {
char c;
unsigned char b;
int i;
unsigned int u;
long l;
unsigned long ul;
long long ll;
unsigned long long ull;
float f;
double d;
const char* s;
const unsigned char* bs;
} v;
} FmtArg;
static inline FmtArg make_char(char v) {
return (FmtArg){T_CHAR, {.c = v}};
}
static inline FmtArg make_uchar(unsigned char v) {
return (FmtArg){T_BYTE, {.b = v}};
}
static inline FmtArg make_string(const char* s) {
return (FmtArg){T_STRING, {.s = s}};
}
static inline FmtArg make_bytes(const unsigned char* s) {
return (FmtArg){T_BYTES, {.bs = s}};
}
static inline FmtArg make_int(int v) {
return (FmtArg){T_INT, {.i = v}};
}
static inline FmtArg make_uint(unsigned int v) {
return (FmtArg){T_UINT, {.u = v}};
}
static inline FmtArg make_long(long v) {
return (FmtArg){T_LONG, {.l = v}};
}
static inline FmtArg make_ulong(unsigned long v) {
return (FmtArg){T_ULONG, {.ul = v}};
}
static inline FmtArg make_longlong(long long v) {
return (FmtArg){T_LONGLONG, {.ll = v}};
}
static inline FmtArg make_ulonglong(unsigned long long v) {
return (FmtArg){T_ULONGLONG, {.ull = v}};
}
static inline FmtArg make_float(float v) {
return (FmtArg){T_FLOAT, {.f = v}};
}
static inline FmtArg make_double(double v) {
return (FmtArg){T_DOUBLE, {.d = v}};
}
static inline FmtArg make_unknown(void) {
return (FmtArg){T_UNKNOWN};
}
有了自定义类型了,就可以声明具体实现的C函数了:
void printx_impl(const char* fmt, int arg_count, FmtArg* argv);
前面的fmt就是类似C#的格式符,也可以是nullptr,表明不需要格式字符串,自动依次使用参数;arg_count表明有几个参数,决定着后面参数argv的个数;argv为实际的参数信息。
而给用户调用的API,printx和print其实是一个宏,它类似如下声明:
#define printx(fmt, ...)
#define print(...)
我们需要在宏中调用实际工作的C函数printx_impl,在调用前需要将传入的参数转换成自定义数据类型FmtArg,并且准备好printx_impl函数需要的参数。
三、计算参数个数
如何计算宏参数...中包含的参数个数?
在C/C++中参数... 可能包含0个到多个参数,我们假定最多支持10个参数。为了计算宏参数个数,需要定义一个匹配或者说是取宏参数的宏:
#define GET_MACRO(_0, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, n, ...) n
GET_MACRO的参数列表是:_0, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, n, ...,这里的...表示剩余参数,但在宏定义中,我们只取n)
然后定义计算宏参数个数的宏:
#define COUNT_ARGS(...) \
GET_MACRO(0, ##__VA_ARGS__, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0)
__VA_ARGS__中可能是0个参数,C/C++编译器有一种写法:##__VA_ARGS__,当是0个时,会把前面的逗号去掉,变为:
GET_MACRO(0, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0)
GET_MACRO取第12个参数,结果为0。
如果有多个参数,则依次填充。比如,参数1,2,3,变为:
GET_MACRO(0, 1, 2, 3, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0)
GET_MACRO取第12个参数,结果为3。
四、转换参数
通过前面的方法,我们知道了参数个数,接下来就是实现参数类型的转换了,要实现类型转换就需要知道是什么类型,C11提供了_Generic关键字,只有它才能识别类型,实现泛型。其语法参见:https://cppreference.cn/w/c/language/generic
定义如下宏来将参数转换成自定义类型FmtArg:
#define MAKE_FMTARG(x) \
_Generic((x), \
char: make_char, \
unsigned char: make_uchar, \
const char*: make_string, \
char*: make_string, \
const unsigned char*: make_bytes, \
unsigned char*: make_bytes, \
int: make_int, \
unsigned int: make_uint, \
long: make_long, \
unsigned long: make_ulong, \
long long: make_longlong, \
unsigned long long: make_ulonglong, \
float: make_float, \
double: make_double, \
default: make_unknown)(x)
使用获取参数个数一样的方法,我们也可以逐个取参数,然后调用MAKE_FMTARG进行转换,先定义一组宏:
#define APPLY0(m, a) 0 // 这里定义为0,避免编译器警告
#define APPLY1(m, a) m(a)
#define APPLY2(m, a, ...) m(a), APPLY1(m, __VA_ARGS__)
#define APPLY3(m, a, ...) m(a), APPLY2(m, __VA_ARGS__)
#define APPLY4(m, a, ...) m(a), APPLY3(m, __VA_ARGS__)
#define APPLY5(m, a, ...) m(a), APPLY4(m, __VA_ARGS__)
#define APPLY6(m, a, ...) m(a), APPLY5(m, __VA_ARGS__)
#define APPLY7(m, a, ...) m(a), APPLY6(m, __VA_ARGS__)
#define APPLY8(m, a, ...) m(a), APPLY7(m, __VA_ARGS__)
#define APPLY9(m, a, ...) m(a), APPLY8(m, __VA_ARGS__)
#define APPLY10(m, a, ...) m(a), APPLY9(m, __VA_ARGS__)
#define APPLY(m, ...) \
GET_MACRO(0, ##__VA_ARGS__, APPLY10, APPLY9, APPLY8, APPLY7, APPLY6, APPLY5, \
APPLY4, APPLY3, APPLY2, APPLY1, APPLY0)(m, __VA_ARGS__)
这组宏支持0~10个参数,对每个参数调用m,m可以是宏,也可以是函数。我们这里需要调用的是MAKE_FMTARG宏。
五、实现printx和print宏
现在可以写出printx和print宏的实现了:
#define printx(fmt, ...) \
printx_impl(fmt, COUNT_ARGS(__VA_ARGS__), \
(FmtArg[]){APPLY(MAKE_FMTARG, ##__VA_ARGS__)})
#define print(...) \
printx_impl(0, COUNT_ARGS(__VA_ARGS__), \
(FmtArg[]){APPLY(MAKE_FMTARG, ##__VA_ARGS__)})
(FmtArg[]){APPLY(MAKE_FMTARG, ##__VA_ARGS__)}构建了一个FmtArg的数组,如果参数个数为0,则是(FmtArg[]){0}。
六、扩展实现fprintx和fprint宏
目前的API还只支持输出到标准输出设备stdout,无法输出到文件,比如想输出到日志文件,只需要添加一个FILE* fp参数即可,相应修改如下:
void printx_impl(FILE* fp, const char* fmt, int arg_count, FmtArg* argv);
#define printx(fmt, ...) \
printx_impl(stdout, fmt, COUNT_ARGS(__VA_ARGS__), \
(FmtArg[]){APPLY(MAKE_FMTARG, ##__VA_ARGS__)})
#define print(...) \
printx_impl(stdout, 0, COUNT_ARGS(__VA_ARGS__), \
(FmtArg[]){APPLY(MAKE_FMTARG, ##__VA_ARGS__)})
实现fprintx和fprint宏:
#define fprintx(fp, fmt, ...) \
printx_impl(fp, fmt, COUNT_ARGS(__VA_ARGS__), \
(FmtArg[]){APPLY(MAKE_FMTARG, ##__VA_ARGS__)})
#define fprint(fp, ...) \
printx_impl(fp, 0, COUNT_ARGS(__VA_ARGS__), \
(FmtArg[]){APPLY(MAKE_FMTARG, ##__VA_ARGS__)})
七、源码
printx.h:
// copyright(C), author: Witton
// email: witton@163.com
#ifndef _PRINT_X_H_INCLUDE_
#define _PRINT_X_H_INCLUDE_
#include <stdio.h>
typedef enum {
T_UNKNOWN,
T_CHAR,
T_BYTE,
T_STRING,
T_BYTES,
T_INT,
T_UINT,
T_LONG,
T_ULONG,
T_LONGLONG,
T_ULONGLONG,
T_FLOAT,
T_DOUBLE,
} EDataType;
typedef struct {
EDataType type;
union {
char c;
unsigned char b;
int i;
unsigned int u;
long l;
unsigned long ul;
long long ll;
unsigned long long ull;
float f;
double d;
const char* s;
const unsigned char* bs;
} v;
} FmtArg;
static inline FmtArg make_char(char v) {
return (FmtArg){T_CHAR, {.c = v}};
}
static inline FmtArg make_byte(unsigned char v) {
return (FmtArg){T_BYTE, {.b = v}};
}
static inline FmtArg make_string(const char* s) {
return (FmtArg){T_STRING, {.s = s}};
}
static inline FmtArg make_bytes(const unsigned char* s) {
return (FmtArg){T_BYTES, {.bs = s}};
}
static inline FmtArg make_int(int v) {
return (FmtArg){T_INT, {.i = v}};
}
static inline FmtArg make_uint(unsigned int v) {
return (FmtArg){T_UINT, {.u = v}};
}
static inline FmtArg make_long(long v) {
return (FmtArg){T_LONG, {.l = v}};
}
static inline FmtArg make_ulong(unsigned long v) {
return (FmtArg){T_ULONG, {.ul = v}};
}
static inline FmtArg make_longlong(long long v) {
return (FmtArg){T_LONGLONG, {.ll = v}};
}
static inline FmtArg make_ulonglong(unsigned long long v) {
return (FmtArg){T_ULONGLONG, {.ull = v}};
}
static inline FmtArg make_float(float v) {
return (FmtArg){T_FLOAT, {.f = v}};
}
static inline FmtArg make_double(double v) {
return (FmtArg){T_DOUBLE, {.d = v}};
}
static inline FmtArg make_unknown(void) {
return (FmtArg){T_UNKNOWN};
}
#define MAKE_FMTARG(x) \
_Generic((x), \
char: make_char, \
unsigned char: make_byte, \
const char*: make_string, \
char*: make_string, \
const unsigned char*: make_bytes, \
unsigned char*: make_bytes, \
int: make_int, \
unsigned int: make_uint, \
long: make_long, \
unsigned long: make_ulong, \
long long: make_longlong, \
unsigned long long: make_ulonglong, \
float: make_float, \
double: make_double, \
default: make_unknown)(x)
#define GET_MACRO(_0, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, n, ...) n
#define COUNT_ARGS(...) \
GET_MACRO(0, ##__VA_ARGS__, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0)
#define APPLY0(m, a) 0 // 这里定义为0,避免编译器警告
#define APPLY1(m, a) m(a)
#define APPLY2(m, a, ...) m(a), APPLY1(m, __VA_ARGS__)
#define APPLY3(m, a, ...) m(a), APPLY2(m, __VA_ARGS__)
#define APPLY4(m, a, ...) m(a), APPLY3(m, __VA_ARGS__)
#define APPLY5(m, a, ...) m(a), APPLY4(m, __VA_ARGS__)
#define APPLY6(m, a, ...) m(a), APPLY5(m, __VA_ARGS__)
#define APPLY7(m, a, ...) m(a), APPLY6(m, __VA_ARGS__)
#define APPLY8(m, a, ...) m(a), APPLY7(m, __VA_ARGS__)
#define APPLY9(m, a, ...) m(a), APPLY8(m, __VA_ARGS__)
#define APPLY10(m, a, ...) m(a), APPLY9(m, __VA_ARGS__)
#define APPLY(m, ...) \
GET_MACRO(0, ##__VA_ARGS__, APPLY10, APPLY9, APPLY8, APPLY7, APPLY6, APPLY5, \
APPLY4, APPLY3, APPLY2, APPLY1, APPLY0)(m, __VA_ARGS__)
#define printx(fmt, ...) \
printx_impl(stdout, fmt, COUNT_ARGS(__VA_ARGS__), \
(FmtArg[]){APPLY(MAKE_FMTARG, ##__VA_ARGS__)})
#define print(...) \
printx_impl(stdout, 0, COUNT_ARGS(__VA_ARGS__), \
(FmtArg[]){APPLY(MAKE_FMTARG, ##__VA_ARGS__)})
#define fprintx(fp, fmt, ...) \
printx_impl(fp, fmt, COUNT_ARGS(__VA_ARGS__), \
(FmtArg[]){APPLY(MAKE_FMTARG, ##__VA_ARGS__)})
#define fprint(fp, ...) \
printx_impl(fp, 0, COUNT_ARGS(__VA_ARGS__), \
(FmtArg[]){APPLY(MAKE_FMTARG, ##__VA_ARGS__)})
void printx_impl(FILE* fp, const char* fmt, int arg_count, FmtArg* argv);
#endif
printx.c:
// copyright(C), author: Witton
// email: witton@163.com
#include <ctype.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "printx.h"
#if __STDC_VERSION__ >= 202311L
#ifdef NULL
#undef NULL
#define NULL nullptr
#endif
#endif
static void print_one_arg(FILE* fp, const char* fmt_spec, FmtArg arg) {
if (!fmt_spec[0]) {
switch (arg.type) {
case T_CHAR:
(void)fprintf(fp,"%c", arg.v.c);
break;
case T_BYTE:
(void)fprintf(fp,"%hhu", arg.v.b);
break;
case T_INT:
(void)fprintf(fp,"%d", arg.v.i);
break;
case T_UINT:
(void)fprintf(fp,"%u", arg.v.u);
break;
case T_LONG:
(void)fprintf(fp,"%ld", arg.v.l);
break;
case T_LONGLONG:
(void)fprintf(fp,"%lld", arg.v.ll);
break;
case T_ULONGLONG:
(void)fprintf(fp,"%llu", arg.v.ull);
break;
case T_FLOAT:
(void)fprintf(fp,"%f", arg.v.f);
break;
case T_DOUBLE:
(void)fprintf(fp,"%lf", arg.v.d);
break;
case T_STRING:
(void)fprintf(fp,"%s", arg.v.s);
break;
default:
(void)fprintf(fp,"<?(by witton)>");
break;
}
return;
}
char real_fmt[64];
(void)snprintf(real_fmt, sizeof(real_fmt), "%%%s", fmt_spec);
switch (arg.type) {
case T_CHAR:
(void)fprintf(fp,real_fmt, arg.v.c);
break;
case T_BYTE:
(void)fprintf(fp,real_fmt, arg.v.b);
break;
case T_INT:
(void)fprintf(fp,real_fmt, arg.v.i);
break;
case T_UINT:
(void)fprintf(fp,real_fmt, arg.v.u);
break;
case T_LONG:
(void)fprintf(fp,real_fmt, arg.v.l);
break;
case T_LONGLONG:
(void)fprintf(fp,real_fmt, arg.v.ll);
break;
case T_ULONGLONG:
(void)fprintf(fp,real_fmt, arg.v.ull);
break;
case T_FLOAT:
(void)fprintf(fp,real_fmt, arg.v.f);
break;
case T_DOUBLE:
(void)fprintf(fp,real_fmt, arg.v.d);
break;
case T_STRING:
(void)fprintf(fp,real_fmt, arg.v.s);
break;
default:
(void)fprintf(fp,"<?(by witton)>");
break;
}
}
static inline void handle_printx_fmt(FILE* fp, const char* p,
const char* end,
int arg_count,
FmtArg* argv) {
char index_str[16] = {0};
char spec[32] = {0};
int idx = 0;
const char* colon = memchr(p + 1, ':', end - (p + 1));
if (colon) {
size_t len_idx = colon - (p + 1);
strncpy(index_str, p + 1, len_idx);
strncpy(spec, colon + 1, end - (colon + 1));
} else {
strncpy(index_str, p + 1, end - (p + 1));
}
if (isdigit((unsigned char)index_str[0])) {
idx = strtol(index_str, NULL, 10);
if (idx >= 0 && idx < arg_count) {
print_one_arg(fp, spec, argv[idx]);
} else {
(void)fprintf(fp, "<BAD_INDEX(by witton)>");
}
} else {
(void)fprintf(fp, "<BAD_FORMAT(by witton)>");
}
}
void printx_impl(FILE* fp, const char* fmt, int arg_count, FmtArg* argv) {
if (NULL == fmt) {
for (int i = 0; i < arg_count; ++i) {
print_one_arg(fp, "", argv[i]);
(void)putc(' ', fp);
}
return;
}
int used_args = 0;
const char* p = fmt;
while (*p) {
if (p[0] == '{' && p[1] == '}' && used_args < arg_count) {
print_one_arg(fp, "", argv[used_args++]);
p += 2; // 跳过 '}'
} else if (*p == '{' && *(p + 1) != '{') {
const char* end = strchr(p, '}');
if (!end) {
(void)putc(*p++, fp);
continue;
}
handle_printx_fmt(fp, p, end, arg_count, argv);
p = end + 1;
} else if (*p == '{' && *(p + 1) == '{') {
(void)putc('{', fp);
p += 2;
} else if (*p == '}' && *(p + 1) == '}') {
(void)putc('}', fp);
p += 2;
} else {
(void)putc(*p++, fp);
}
}
}
至此,我们可以像C#一样写格式化输出代码了,可以不担心格式符写错了。但是如果了使用自定义格式符,即类似{1:.1f}中有冒号后面标准C格式符,则依旧需要小心格式符是否写正确!
如果本文对你有帮助,欢迎点赞收藏!
C语言实现类似C#的格式化输出
1782

被折叠的 条评论
为什么被折叠?



