A. FizzBuzz Remixed
思路:加上0后每15个数的前三个作出贡献,再仔细讨论一下就行了。
AC代码:
#include <bits/stdc++.h>
using namespace std;
#define int long long
#define endl '\n'
void solve()
{
int n, m, k;
cin >> n;
int res = (n+1)/15*3;
res += min((n+1)%15, 3ll);
cout << res << endl;
}
signed main()
{
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
int t = 1;
cin >> t;
while (t--)
{
solve();
}
return 0;
}
B. Robot Program
思路:最开始我是按照题意模拟的,但肯定会超时的,所以得优化一下,首先我们必须确定能在min(n,k)秒内能否到达过pos = 0,如果能我们就从pos=0遍历一下看几秒回到pos=0,用剩下的k除以它(向下取整)就可以了。
#include <bits/stdc++.h>
using namespace std;
#define int long long
#define endl '\n'
void solve()
{
int n, x, k;
cin >> n >> x >> k;
string s;
cin >> s;
int num = 0;
int cost = 0;
for (int i=0, pos = x; i<n; i++){
k--;
pos += (s[i]=='L' ? -1:+1);
if (pos == 0){
num++;
break;
}
if (!k) break;
}
for (int i = 0, pos = 0; i<n; i++){
pos += (s[i]=='L' ? -1:1);
if (pos == 0) {
cost = i+1;
break;
}
}
if (cost && num){
num += (k/cost);
}
cout << num << endl;
}
signed main()
{
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
int t = 1;
cin >> t;
while (t--)
{
solve();
}
return 0;
}
C. Limited Repainting
思路:这题最开始看错题了,以为把不满足的惩罚都要加上,而只要的是最大的惩罚项。所以这题就很明显是一个二分,其次只要就是写好check函数里的约束,对于其中如果是‘R’的值大于x肯定不动它,而是‘B’的值大于x就必须动他它,最优的话的可以动连续的‘B’。
#include <bits/stdc++.h>
using namespace std;
#define int long long
#define vi vector<int>
#define endl '\n'
void solve()
{
int n, ma=0, k;
cin >> n >> k;
string s;
cin >> s;
vi a(n);
for (int i=0; i<n; i++){
cin >> a[i];
ma = max(ma, a[i]);
}
auto check = [&](int x)->bool
{
int cost = 0, flag = 0;
for (int i = 0; i<n; i++){
if (a[i] <= x) continue;
else if (s[i] == 'B') cost += 1-flag, flag = 1;
else flag = 0;
}
return cost <= k;
};
int l = -1, r = ma+1;
while (l+1 < r){
int mid = (l+r)/2;
if (check(mid)){
r = mid;
}
else l = mid;
}
cout << r << endl;
}
signed main()
{
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
int t = 1;
cin >> t;
while (t--)
{
solve();
}
return 0;
}
D. Tree Jumps
思路:这道题感觉用BFS跑比较简单,这里深度比较重要,对于深度不为1,2的点,它的贡献等于它父节点的深度的一系列点减去它父节点的贡献,所以我们只要以动态的思想去更新结果就可以了。
#include<bits/stdc++.h>
#define endl '\n'
#define int long long
using namespace std;
constexpr int mod = 998244353, N = 2e5 + 5, M = 2e5 + 5;
void solve()
{
int n;
cin >> n;
vector<vector<int>> adj(n+1);
vector<int> fa(n+1,0);
for (int i = 2; i<=n; i++){
cin >> fa[i];
adj[fa[i]].push_back(i);
}
vector<int> dep(n+1, 0);
int ans = 0;
vector<int> sum(n+1, 0), now(n+1, 0);
queue<int> q;
q.push(1);
dep[1] = 1;
while (!q.empty()){
int u = q.front();
q.pop();
if (u == 1 || fa[u] == 1) now[u] = 1;
else {
now[u] = (sum[dep[fa[u]]] - now[fa[u]] + mod) % mod;
}
sum[dep[u]] = (sum[dep[u]] + now[u]) % mod;
ans = (ans + now[u]) % mod;
for (int v : adj[u]){
dep[v] = dep[u] + 1;
q.push(v);
}
}
cout << ans << endl;
}
signed main()
{
ios::sync_with_stdio(false);
cin.tie(0); //cout.tie(0);
int t = 1;
cin >> t;
while(t --) solve();
return 0;
}
下面是DFS的跑法:
#include<bits/stdc++.h>
#define inf 0x3f3f3f3f
#define llinf 0x3f3f3f3f3f3f3f3f
#define vi vector <int>
#define vvi vector <vi>
#define endl '\n'
#define int long long
using namespace std;
constexpr int mod = 998244353, N = 2e5 + 5, M = 2e5 + 5;
void solve()
{
int n;
cin >> n;
vector<vector<int>> adj(n+1);
vector<int> fa(n+1,0);
for (int i = 2; i<=n; i++){
cin >> fa[i];
adj[fa[i]].push_back(i);
}
vector<int> dep(n+1, 0);
auto dfs = [&](auto &&dfs, int u, int de)->void
{
dep[u] = de;
for (auto v : adj[u]){
dfs(dfs, v, de+1);
}
};
dfs(dfs, 1, 0);
vector<int> sum(n+1, 0), now(n+1, 0);
vector<int> seq(n+1);
int ans = 0;
iota(seq.begin()+1, seq.end(), 1);
sort(seq.begin()+1, seq.end(), [&](int a, int b){
return dep[a] < dep[b];
});
for (int i = 1; i<=n; i++){
int x = seq[i];
if (x == 1 || fa[x] == 1) now[x] = 1;
else now[x] = (sum[dep[fa[x]]]-now[fa[x]]+mod)%mod;
sum[dep[x]] = (sum[dep[x]]+now[x]) % mod;
ans = (ans + now[x])%mod;
}
cout << ans << endl;
}
int main()
{
ios::sync_with_stdio(false);
cin.tie(0); //cout.tie(0);
int t = 1;
cin >> t;
while(t --) solve();
return 0;
}