SparkStreaming优雅关闭

流式任务需要7*24小时执行,但是有时涉及到升级代码需要主动停止程序,但是分布式程序,没办法做到一个个进程去杀死,所以配置优雅的关闭就显得至关重要了。

关闭方式:使用外部文件系统来控制内部程序关闭。

1)主程序

package com.atguigu;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.FileSystem;

import org.apache.hadoop.fs.Path;

import org.apache.kafka.clients.consumer.ConsumerConfig;

import org.apache.kafka.clients.consumer.ConsumerRecord;

import org.apache.spark.api.java.function.FlatMapFunction;

import org.apache.spark.api.java.function.Function2;

import org.apache.spark.api.java.function.PairFunction;

import org.apache.spark.streaming.Duration;

import org.apache.spark.streaming.StreamingContextState;

import org.apache.spark.streaming.api.java.JavaDStream;

import org.apache.spark.streaming.api.java.JavaInputDStream;

import org.apache.spark.streaming.api.java.JavaPairDStream;

import org.apache.spark.streaming.api.java.JavaStreamingContext;

import org.apache.spark.streaming.kafka010.ConsumerStrategies;

import org.apache.spark.streaming.kafka010.KafkaUtils;

import org.apache.spark.streaming.kafka010.LocationStrategies;

import scala.Tuple2;

import java.net.URI;

import java.util.ArrayList;

import java.util.Arrays;

import java.util.HashMap;

import java.util.Iterator;

public class Test05_Close {

    public static void main(String[] args) throws InterruptedException {

        // 创建流环境

        JavaStreamingContext javaStreamingContext = new JavaStreamingContext("local[*]", "window", Duration.apply(3000L));

        // 创建配置参数

        HashMap<String, Object> map = new HashMap<>();

        map.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"hadoop102:9092,hadoop103:9092,hadoop104:9092");

        map.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringDeserializer");

        map.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringDeserializer");

        map.put(ConsumerConfig.GROUP_ID_CONFIG,"atguigu");

        map.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG,"latest");

        // 需要消费的主题

        ArrayList<String> strings = new ArrayList<>();

        strings.add("topicA");

        JavaInputDStream<ConsumerRecord<String, String>> directStream = KafkaUtils.createDirectStream(javaStreamingContext, LocationStrategies.PreferBrokers(), ConsumerStrategies.<String, String>Subscribe(strings,map));

        JavaDStream<String> stringJavaDStream = directStream.flatMap(new FlatMapFunction<ConsumerRecord<String, String>, String>() {

            @Override

            public Iterator<String> call(ConsumerRecord<String, String> stringStringConsumerRecord) throws Exception {

                String[] split = stringStringConsumerRecord.value().split(" ");

                return Arrays.asList(split).iterator();

            }

        });

        JavaPairDStream<String, Integer> javaPairDStream = stringJavaDStream.mapToPair(new PairFunction<String, String, Integer>() {

            @Override

            public Tuple2<String, Integer> call(String s) throws Exception {

                return new Tuple2<>(s, 1);

            }

        });

        javaPairDStream.reduceByKeyAndWindow(new Function2<Integer, Integer, Integer>() {

            @Override

            public Integer call(Integer v1, Integer v2) throws Exception {

                return v1 + v2;

            }

        },Duration.apply(12000L),Duration.apply(6000L)).print();

        // 开启监控程序

        new Thread(new MonitorStop(javaStreamingContext)).start();

        // 执行流的任务

        javaStreamingContext.start();

        javaStreamingContext.awaitTermination();

    }

    public static class MonitorStop implements Runnable {

        JavaStreamingContext javaStreamingContext = null;

        public MonitorStop(JavaStreamingContext javaStreamingContext) {

            this.javaStreamingContext = javaStreamingContext;

        }

        @Override

        public void run() {

            try {

                FileSystem fs = FileSystem.get(new URI("hdfs://hadoop102:8020"), new Configuration(), "atguigu");

                while (true){

                    Thread.sleep(5000);

                    boolean exists = fs.exists(new Path("hdfs://hadoop102:8020/stopSpark"));

                    if (exists){

                        StreamingContextState state = javaStreamingContext.getState();

                        // 获取当前任务是否正在运行

                        if (state == StreamingContextState.ACTIVE){

                            // 优雅关闭

                            javaStreamingContext.stop(true, true);

                            System.exit(0);

                        }

                    }

                }

            }catch (Exception e){

                e.printStackTrace();

            }

        }

    }

}

2)测试

(1)发送数据

[atguigu@hadoop102 ~]$ kafka-console-producer.sh --broker-list hadoop102:9092 --topic topicA

hello spark

(2)启动Hadoop集群

[atguigu@hadoop102 hadoop-3.1.3]$ sbin/start-dfs.sh

[atguigu@hadoop102 hadoop-3.1.3]$ hadoop fs -mkdir /stopSpark

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

走过冬季

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值