###思路:
最小树形图模板题。
有向图的最小生成树。
#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
#include<map>
#include<cmath>
//#define inf 0x3f3f3f3f
#define inf 1e15
#define eps 1e-6
typedef long long int lli;
using namespace std;
typedef double type;//type是你想用的类型
const int maxn = 1e2+20;
struct poi{
double x, y;
}p[maxn];
struct node{
int u,v;
type w;
}ed[maxn*maxn];
int pre[maxn],id[maxn],vis[maxn],n,m;
type in[maxn];
double dis(poi a, poi b){
return sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y));
}
type dmst(int root, int n, int m){//Directed_MST directed minimal spanning tree
type ret = 0;
while(1){//1.找最小入边
for(int i = 1;i <= n;i++) in[i] = inf;
for(int i = 1;i <= m;i++){
int u = ed[i].u;
int v = ed[i].v;
if(ed[i].w < in[v]-eps && u != v){pre[v] = u;in[v] = ed[i].w;}
}
for(int i = 1;i <= n;i++){
if(i == root) continue;
if(in[i] == inf) return -1;//除了跟以外有点没有入边,则根无法到达它
}
int cnt = 0;//2.找环
memset(id, -1, sizeof(id));
memset(vis, -1, sizeof(vis));
in[root] = 0;
for(int i = 1;i <= n;i++){//标记每个环
ret += in[i];
int v = i;
while(vis[v] != i && id[v] == -1 && v != root){
//每个点寻找其前序点,要么最终寻找至根部,要么找到一个环
vis[v] = i;
v = pre[v];
}
if(v != root && id[v] == -1){//缩点
id[v] = ++cnt;
for(int u = pre[v]; u != v; u = pre[u]) id[u] = cnt;
}
}
if(cnt == 0) break; //无环 则break
for(int i = 1; i <= n; i++)
if(id[i] == -1) id[i] = ++cnt;
for(int i = 1;i <= m;i++){//3.建立新图
int u = ed[i].u;
int v = ed[i].v;
ed[i].u = id[u];
ed[i].v = id[v];
if(id[u] != id[v]) ed[i].w -= in[v];
}
n = cnt;
root = id[root];
}
return ret;
}
int main(){
while(~scanf("%d%d", &n, &m)){
for(int i = 1; i <= n; i++)
scanf("%lf%lf", &p[i].x, &p[i].y);
for(int i = 1; i <= m; i++){
scanf("%d%d", &ed[i].u, &ed[i].v);
if(ed[i].u != ed[i].v) ed[i].w = dis(p[ed[i].u], p[ed[i].v]);
else ed[i].w = inf; //去除自环
}
type ans = dmst(1, n, m);
if(ans == -1) printf("poor snoopy\n");
else printf("%.2f\n", ans);
}
return 0;
}