259. 3Sum Smaller
Given an array of n integers nums and a target, find the number of index triplets i, j, k with 0 <= i < j < k < n that satisfy the condition nums[i] + nums[j] + nums[k] < target.
Example:
Input: nums = [-2,0,1,3], and target = 2
Output: 2
Explanation: Because there are two triplets which sums are less than 2:
[-2,0,1]
[-2,0,3]
Follow up:
Could you solve it in O(n2) runtime?
方法1: two pointers
grandyang:https://www.cnblogs.com/grandyang/p/5235086.html
思路:
仍然是3sum的方法,先确定第一个数,在[0, n - 3]的范围内遍历。从两端开始收缩双指针,这时会遇到两种情况:1. 3sum已经大于等于target,那么由于我们想要求的是smaller than target的组合,此时即使再移动左指针只会越来越大,肯定不会有结果,所以需要将右指针–。2. 小于target,此时找到了一个解,并且此时可以一次性累加所有right - left之间的结果,这是因为如果i, left, right 满足条件,那么所有i, left, [left + 1, right]形式的组合都能满足。累加之后,可以将left++,再次尝试此时的right是否过大。
Complexity
Time complexity: O(n^2)
Space complexity: O(1)
class Solution {
public:
int threeSumSmaller(vector<int>& nums, int target) {
int n = nums.size(), res = 0;
sort(nums.begin(), nums.end());
for (int i = 0; i < n - 2; i++) {
int left = i + 1, right = n - 1;
while (left < right) {
if (nums[i] + nums[left] + nums[right] < target) {
res += right - left;
left++;
}
else {
right--;
}
}
}
return res;
}
};