516. Longest Palindromic Subsequence
Given a string s, find the longest palindromic subsequence’s length in s. You may assume that the maximum length of s is 1000.
Example 1:
Input:
"bbbab"
Output:
4
One possible longest palindromic subsequence is "bbbb".
Example 2:
Input:
"cbbd"
Output:
2
One possible longest palindromic subsequence is "bb".
方法1: 2-dimension dynamic programming
思路:
dp: i 到 j 区间内的longest subsequence长度
initialize: 每个区间内长度至少为1
transfer: 当s[i] == s[j], 如果间隔超过1,dp[i][j] = dp[i + 1][j - 1] + 2,否则dp[i][j] = 2;如果s[i] != s[j] ,尝试舍弃i或者j,取两者较大值。
return:dp[0][n - 1]
易错点
- 循环方向(重要!):因为dp是从 i + 1, j - 1继承过来的,也就是上面和左面,所以 i 需要倒序。
class Solution {
public:
int longestPalindromeSubseq(string s) {
int n = s.size();
vector<vector<int>> dp(n, vector<int>(n, 1));
for (int i = n - 1; i >= 0; i --) {
for (int j = i + 1; j < n; j++) {
if (s[i] == s[j]) {
if (j - i == 1) {
dp[i][j] = 2;
} else {
dp[i][j] = dp[i + 1][j - 1] + 2;
}
}
else {
dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);
}
}
}
return dp[0].back();
}
};