Using Spring 4 WebSocket, sockJS and Stomp support to implement two way server client communication

本文介绍如何使用 Spring 4 的 WebSocket、SockJS 和 STOMP 特性来实现客户端与服务器之间的双向通信。通过 Maven 配置引入所需模块,并设置 Spring MVC 配置文件中的消息代理,最终演示了一个简单的实例,包括客户端 JavaScript 代码与服务器端控制器交互的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >



Using Spring 4 WebSocket, sockJS and Stomp support to implement two way server client communication

One exciting new feature of Spring 4 is the support for WebSocket, SockJS and STOMP messaging. This allows two way communication between the server and its clients in a Spring MVC web application using the standard point-to-point and publish-subscribe messaging protocols. In this post, I will demonstrate how to set up a basic boilerplate project to start using this new feature. It is in part based on this article.

Maven Setup

First we need to add the Spring messaging modules in the POM file:

<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-messaging</artifactId>
 <version>4.0.0.RELEASE</version>
 </dependency>
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-websocket</artifactId>
 <version>4.0.0.RELEASE</version>
 </dependency>

Spring MVC Configuration

Next, we need to add the message broker config to the Spring MVC config XML file.

<beans
 ...
 xmlns:websocket="http://www.springframework.org/schema/websocket"
 xsi:schemaLocation="
 ...

http://www.springframework.org/schema/websocket

 http://www.springframework.org/schema/websocket/spring-websocket-4.0.xsd">
<websocket:message-broker application-destination-prefix="/app">
       <websocket:stomp-endpoint path="/hello">
            <websocket:sockjs/>
       </websocket:stomp-endpoint>
       <websocket:simple-broker prefix="/topic"/>
</websocket:message-broker>
<!-- Other MVC config omitted here-->

The main thing here is the set up of the message broker for handling the message exchange between the server and its clients. This is done via the <message-broker> and its child tags. The tag <websocket:simple-broker> indicates we are using in-memory message broker.

It is easy to understand together with the server and client codes so I will include them below first before attempting to give a bit more explanations by cross-referencing the client and server codes.

Spring MVC Controller

Below is my Spring MVC Controller

 @Controller
 public class MessageController {
      @MessageMapping("/hello")
      @SendTo("/topic/greetings")
      public Greeting greeting(HelloMessage message) throws Exception {
           return new Greeting("Hello, " + message.getName() + "!");
     }
}

The method argument HelloMessage and output Greeting are just POJOs representing the body of the messages being sent and returned.

public class Greeting {
    private String content;
    public Greeting(String content) {
           this.content = content;
    }
    public String getContent() {
      return content;
    }
}
public class HelloMessage {
    private String name;
    public String getName() {
        return name;
    }
}

Client sockJS and STOMP codes

On the client side, I use the sockJS protocol fallback option as outlined in the Spring documentation. The javascript codes are included below

// Create stomp client over sockJS protocol (see Note 1)
 var socket = new SockJS("/hello");
 var stompClient = Stomp.over(socket);

 // callback function to be called when stomp client is connected to server (see Note 2)
 var connectCallback = function() {
      alert("connected!");
      stompClient.subscribe('/topic/greetings', function(greeting){
           alert(JSON.parse(greeting.body).content);
      });
 }; 

 // callback function to be called when stomp client could not connect to server (see Note 3)
 var errorCallback = function(error) {
      // display the error's message header:
      alert(error.headers.message);
 };

 // Connect as guest (Note 4)
 stompClient.connect("guest", "guest", connectCallback, errorCallback);
Note
  1. The client starts by create a sockJS by specifying the endpoint (ie. /hello) to connect to and then a stomp client is created over the socket. The endpoint here should match that defined in the Spring MVC configuration in the lines. Note also the 2nd line referring to sockJS.

    <websocket:stomp-endpoint path=”/hello”>
    < websocket:sockjs/>
    < /websocket:stomp-endpoint>

  2. Then a callback function is created and assigned to a variable connectCallback. This is called when a successful connection is made by the stomp client. This allows us to start making subscriptions to messages (as in codes, repeated below) and sending messages. Note the subscription is for the topic “/topic/greetings”

    stompClient.subscribe(‘/topic/greetings’, function(greeting){
    alert(JSON.parse(greeting.body).content);
    });

  3. A error callback function is defined if stomp client fails to connect to server.
  4. This line makes the connection registering the callback functions.

Now we are ready to send messages from the client, e.g. using the following javascript function

// function to send message
 function fnSayHi() {
       stompClient.send("/app/hello, JSON.stringify({ 'name': 'Joe' }));
 }

The message will be sent to the Spring MVC message handler method greeting() as defined via the annotation @MessageMapping(“/hello”).

 <websocket:message-broker application-destination-prefix=”/app”>

Note the prefix “/app” is defined in the Spring config as  application-destination-prefix attribute of the message broker: Note also, the use of @SendTo annotation to direct the message to a given destination. I repeat the controller method below

 @MessageMapping("/hello")
 @SendTo("/topic/greetings")
 public Greeting greeting(HelloMessage message) throws Exception {
      return new Greeting("Hello, " + message.getName() + "!");
 }

That’s it for now.

About these ads
内容概要:本文详细探讨了基于MATLAB/SIMULINK的多载波无线通信系统仿真及性能分析,重点研究了以OFDM为代表的多载波技术。文章首先介绍了OFDM的基本原理和系统组成,随后通过仿真平台分析了不同调制方式的抗干扰性能、信道估计算法对系统性能的影响以及同步技术的实现与分析。文中提供了详细的MATLAB代码实现,涵盖OFDM系统的基本仿真、信道估计算法比较、同步算法实现和不同调制方式的性能比较。此外,还讨论了信道特征、OFDM关键技术、信道估计、同步技术和系统级仿真架构,并提出了未来的改进方向,如深度学习增强、混合波形设计和硬件加速方案。; 适合人群:具备无线通信基础知识,尤其是对OFDM技术有一定了解的研究人员和技术人员;从事无线通信系统设计与开发的工程师;高校通信工程专业的高年级本科生和研究生。; 使用场景及目标:①理解OFDM系统的工作原理及其在多径信道环境下的性能表现;②掌握MATLAB/SIMULINK在无线通信系统仿真中的应用;③评估不同调制方式、信道估计算法和同步算法的优劣;④为实际OFDM系统的设计和优化提供理论依据和技术支持。; 其他说明:本文不仅提供了详细的理论分析,还附带了大量的MATLAB代码示例,便于读者动手实践。建议读者在学习过程中结合代码进行调试和实验,以加深对OFDM技术的理解。此外,文中还涉及了一些最新的研究方向和技术趋势,如AI增强和毫米波通信,为读者提供了更广阔的视野。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值