[刷题]Minimum Adjustment Cost

本文介绍了一个针对数组调整的算法实现,该算法通过动态规划的方法,将数组中的元素调整到目标范围内,使得所有元素之间的差的绝对值不超过给定的目标值,同时使调整的总成本最小。

[LintCode]Minimum Adjustment Cost

public class Solution {
    /**
     * @param A: An integer array.
     * @param target: An integer.
     */
    public int MinAdjustmentCost(ArrayList<Integer> A, int target) {
        // 2015-05-23 
        int n = A.size();
        if (n < 2) {
            return 0;
        }
        // init
        int[][] cost = new int[n][100];
        for (int i = 0; i < 100; i++) {
            cost[0][i] = Math.abs(A.get(0) - (i + 1)); //A[0]到i + 1的距离
        }
        
        for (int i = 1; i < n; i++) {
            for (int j = 0; j < 100; j++) {
                int diff = Math.abs(A.get(i) - (j + 1)); //A[i]到j + 1的距离
                int upper = Math.min(j + target, 99); //k的上界
                int lower = Math.max(j - target, 0); //k的下界
                cost[i][j] = Integer.MAX_VALUE;
                for (int k = lower; k <= upper; k++) {
                    cost[i][j] = Math.min(cost[i][j], cost[i-1][k] + diff);
                } // for
            } // for
        } // for
        // 最优解
        int min = Integer.MAX_VALUE;
        for (int i = 0; i < 100; i++) {
            min = Math.min(min, cost[n - 1][i]);
        }
        return min;
    }
}


### CPPR Adjustment in Programming or Technology Context CPPR (Cognitive Processing Power Regulation) adjustment refers to the dynamic allocation and regulation of computational resources for cognitive tasks, ensuring optimal performance under varying workloads and constraints. This concept is closely tied to embodied cognition theory, which provides a framework for machine thinking that integrates perception, action, and cognition[^1]. However, implementing CPPR adjustments involves addressing technical challenges such as real-time resource allocation, energy efficiency, and maintaining system stability. In programming, CPPR adjustment can be achieved through several approaches: 1. **Dynamic Resource Allocation**: Systems can dynamically allocate CPU, GPU, or memory resources based on the current workload. For instance, in cloud computing environments, this could involve scaling up or down the number of virtual machines or containers[^2]. 2. **Predictive Encoding**: Predictive encoding frameworks allow systems to anticipate future demands and adjust resources accordingly. This method reduces latency and improves responsiveness by preemptively allocating resources before they are needed[^1]. 3. **Energy-Efficient Algorithms**: Implementing algorithms that optimize both time and energy consumption is critical for CPPR. Techniques such as adaptive sampling, pruning unnecessary computations, and leveraging specialized hardware (e.g., GPUs or TPUs) contribute to efficient processing. Below is an example of how one might implement a basic CPPR adjustment mechanism in Python, focusing on dynamically adjusting thread counts for parallel processing: ```python import multiprocessing import psutil def adjust_cppr(workload): # Determine the number of available CPU cores cpu_count = multiprocessing.cpu_count() # Calculate the optimal number of threads based on workload if workload < 50: threads = int(cpu_count * 0.5) # Use half of the cores for light workloads elif workload < 80: threads = cpu_count # Use all cores for moderate workloads else: threads = int(cpu_count * 1.5) # Use more than available cores for heavy workloads return threads # Example usage workload = 75 # Hypothetical workload percentage optimal_threads = adjust_cppr(workload) print(f"Optimal thread count for workload {workload}%: {optimal_threads}") ```
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值