Keras 实现手写字识别(代码)

本文介绍了一个使用Keras搭建的简单神经网络模型进行MNIST手写数字识别的任务。该模型包含多个全连接层,并采用了Dropout来防止过拟合。通过调整参数如学习率和Dropout比例,实现了较好的训练集准确率(98%)和测试集准确率(95%)。文中还对比了不同层数对模型性能的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import numpy as np
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation
from keras.layers import Conv2D, MaxPooling2D, Flatten
from keras.optimizers import SGD, Adam
from keras.utils import np_utils
from keras.datasets import mnist
# categorical_crossentropy

def load_data():
    (x_train, y_train), (x_test, y_test) = mnist.load_data()
    number = 10000
    x_train = x_train[0:number]
    y_train = y_train[0:number]
    x_train = x_train.reshape(number, 28 * 28)
    x_test = x_test.reshape(x_test.shape[0], 28 * 28)
    x_train = x_train.astype('float32')
    x_test = x_test.astype('float32')
    # convert class vectors to binary class matrices
    y_train = np_utils.to_categorical(y_train, 10)
    y_test = np_utils.to_categorical(y_test, 10)
    x_train = x_train
    x_test = x_test
    # 加上x_test=np.random.normal(x_test)
    x_test=np.random.normal(x_test)
    x_train = x_train / 255
    x_test = x_test / 255
    return (x_train, y_train), (x_test, y_test)
(x_train, y_train), (x_test, y_test) = load_data()

model = Sequential()
model.add(Dense(input_dim=28*28, units=689, activation='relu'))
# 添加droput,正常设为0.5,这里trian的精度很高,故而设的高一些,为0.7;
# droput削弱trian的overfitting;
model.add(Dropout(0.5))
model.add(Dense(units=689, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(units=689, activation='relu'))
model.add(Dropout(0.5))

# for i in range(10):
#          model.add(Dense(units=689, activation='relu'))


model.add(Dense(units=10, activation='softmax'))

# model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
model.compile(loss='categorical_crossentropy', optimizer=SGD(lr=0.1), metrics=['accuracy'])

model.fit(x_train, y_train, batch_size=10, epochs=20)

result = model.evaluate(x_train, y_train, batch_size=10000)
print('\nTrain Acc', result[1])

result = model.evaluate(x_test, y_test, batch_size=10000)
print('\nTest Acc', result[1])

result = model.predict(x_test)


# 结果 10层网络,train acc = 96%;test acc = 92%
#     3层网络,train acc = 99%;test acc = 96%
# 增加了droput,3层网络,train acc = 98%; test acc = 95%

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值