由于最近做到了一些 3D Hand Pose Estimation 相关的内容,因而看了这篇CVPR19的 oral 论文,官方说公布源代码,但是github给的是个空repo,希望早点开源吧。
近些年来,基于 RGB图像+depth map 的 3D Hand Pose Estimation 在多个数据榜上基本饱和了,而由于本身2D single rgb image 生成 3D keypoints (21个) 的困难,目前并没有那么饱和。而最近涌现出了一批利用 depth map 来做 fine-tuning 的工作。这篇文章就是从此出发的。
总的来说,这篇论文的主要贡献在于提出了一套模型框架,不仅能够通过 RGB图像得到 Hand Pose, 同时能够从 Hand Mesh 中线性回归得到 Hand Pose。
模型总体架构
以下先从模型整体架构出发进行分析:
这篇论文模型的训练有两个阶段,第一个阶段在合成数据集上进行训练 (合成数据集由自己的手形配上COCO里面的不同背景融合得到),第二个阶段将第一阶段的模型在真实数据集上 fine-tuning, 美其名曰让模型更加鲁棒,从而能够在真实场景下表现更好。
合成数据集上的训练
合成数据集上的整体流程如上图所示:首先将 synthetic image 经过一个 two-stacked hourglass network,得到image的热力图,然后联合热力图和 hourglass network 的输出作为 resnet 的输入 feature maps (按照原文中8层的设置加上4层的pooling推测可能是浓缩 resnet18), 接着得到所谓的 latent feature 输出。然后将 latent feature 传给 graph cnn, 得到 1280 维的 3D hand mesh, 最后通过 lin