MV3D -- 3D proposal 网络

本文介绍了3D Proposal网络,它是2D Proposal网络的三维扩展。文章详细解释了如何从鸟瞰图生成3D框建议,并介绍了3D先验框的设计过程。此外,还讨论了3D Regression的过程以及为提高检测效率而使用的上采样技术。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

3D proposal 网络

实际上3D proposal network就是2D proposal的升维,从实现来看,本质思想完全没有变化。然而实际上第一步得到的3D proposal是通过M+2个投影后的鸟瞰图得到的,这一部分理解起来较难。

  • Given a bird’s eye view map. the network generates 3D box proposals from a set of 3D prior boxes. Each 3D boxis parameterized by (x, y, z, l,w,h), which are the center and size (in meters) of the 3D box in LIDAR coordinate system. For each 3D prior box, the corresponding bird’s eye view anchor (xbv, ybv, lbv,wbv) can be obtained by dis- cretizing (x, y, l,w). We design N 3D prior boxes by clus- tering ground truth object sizes in the training set. In the case of car detection, (l,w) of prior boxes takes values in
    {(3.9, 1.6), (1.0, 0.6)}, and the height h is set to 1.56m. By rotating the bird’s eye view anchors 90 degrees, we obtain
    N = 4 prior boxes. (x, y) is the varying positions in the bird’s eye view feature map, and z can be computed based on the camera height and object height. We do not do ori- entation regression in proposal generation, whereas we left it to the next prediction stage. The orientations of 3D boxes
    are restricted to {0◦, 90◦}, which are close to the actual ori- entations of most road scene objects. This simplification makes training of proposal regression easier.

关于该部分的实现待理解之后进行分析。此外,作者考虑到该卷积网络对精度较低的物体的检测效率不高,因此使用到了上采样。

后面的3D Regression的过程真的就是2D上的升维,从实现上来看,基本上没有变化,熟悉2D bounding-box regression的,基本很快就能理解。详情可参看论文。

在利用鸟瞰图生成3D proposal的时候,使用到的就是NMS方法。减少冗余计算。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值