最大子串和问题(Maximum Subarray)

本文详细介绍了Kadane算法,这是一种用于寻找数组中最大子数组和的经典算法,并提供了两种Python实现方式。文章还讨论了算法的基本原理,以及如何在O(n)时间内找到最大子数组和。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文转载自:http://blog.youkuaiyun.com/joylnwang/article/details/6859677

刚刚求连续子数组的最大和一个在O(n)时间内可以完成的Kadane算法,对原理很感兴趣,所以就搜到了这篇讲的很详细的文章,记录下来方便自己以后查阅。以下是原文。


又一个经典问题,对于一个包含负值的数字串array[1...n],要找到他的一个子串array[i...j](0<=i<=j<=n),使得在array的所有子串中,array[i...j]的和最大。
这里我们需要注意子串和子序列之间的区别。子串是指数组中连续的若干个元素,而子序列只要求各元素的顺序与其在数组中一致,而没有连续的要求。对于一个元素数为n的数组,其含有2^n个子序列和n(n+1)/2个子串。如果使用穷举法,则至少需要O(n^2)的时间才能得到答案。卡耐基梅隆大学的Jay Kadane的给出了一个线性时间算法,我们就来看看,如何在线性时间内解决最大子串和问题。
要说明Kadane算法的正确性,需要两个结论。首先,对于array[1...n],如果array[i...j]就是满足和最大的子串,那么对于任何k(i<=k<=j),我们有array[i...k]的和大于0。因为如果存在k使得array[i...k]的和小于0,那么我们就有array[k+1...j]的和大于array[i...j],这与我们假设的array[i...j]就是array中和最大子串矛盾。
其次,我们可以将数组从左到右分割为若干子串,使得除了最后一个子串之外,其余子串的各元素之和小于0,且对于所有子串array[i...j]和任意k(i<=k<j),有array[i...k]的和大于0。此时我们要说明的是,满足条件的和最大子串,只能是上述某个子串的前缀,而不可能跨越多个子串。我们假设array[p...q],是array的和最大子串,且array[p...q],跨越了array[i...j],array[j+1...k]。根据我们的分组方式,存在i<=m<j使得array[i...m]的和是array[i...j]中的最大值,存在j+1<=n<k使得array[j+1...n]的和是array[j+1...k]的最大值。由于array[m+1...j]使得array[i...j]的和小于0。此时我们可以比较array[i...m]和array[j+1...n],如果array[i...m]的和大于array[j+1...n]则array[i...m]>array[p...q],否array[j+1...n]>array[p...q],无论谁大,我们都可以找到比array[p...q]和更大的子串,这与我们的假设矛盾,所以满足条件的array[p...q]不可能跨越两个子串。对于跨越更多子串的情况,由于各子串的和均为负值,所以同样可以证明存在和更大的非跨越子串的存在。对于单元素和最大的特例,该结论也适用。
根据上述结论,我们就得到了Kadane算法的执行流程,从头到尾遍历目标数组,将数组分割为满足上述条件的子串,同时得到各子串的最大前缀和,然后比较各子串的最大前缀和,得到最终答案。我们以array={−2, 1, −3, 4, −1, 2, 1, −5, 4}为例,来简单说明一下算法步骤。通过遍历,可以将数组分割为如下3个子串(-2),(1,-3),(4,-1,2,1,-5,4),这里对于(-2)这样的情况,单独分为一组。各子串的最大前缀和为-2,1,6,所以目标串的最大子串和为6。
下面是实现代码:

# 只能解决序列中不含负数的情况
def maxSeqSum5(X):
    '''maxSeqSum5 O(n)'''
    maxsofar = maxendinghere = 0
    for i in range(len(X)):
        maxendinghere += X[i]
        if maxendinghere < 0:
            maxendinghere = 0
        maxsofar = max(maxsofar,maxendinghere)
    return maxsofar


# 当序列中含有负数的时,这个都可以解决
def maxSeqSum5(array):
    '''maxSeqSum5 O(n)'''
    maxsofar = maxendinghere = array[0]
    for i in range(1,len(array)):
        maxendinghere += array[i]
        if maxendinghere < array[i]:
            maxendinghere = array[i]
        maxsofar = max(maxsofar,maxendinghere)
    return maxsofar

这里我们需要注意,对于数组元素全为负的情况,由于不满足上述的两条结论,所以Kadane算法无法给出正确答案。
该问题是1977年Ulf Grenander提出的一个数字图像方面的问题,1984年Jay Kadane才给出了这个优美的解决方案。有些问题,看似解法简单,但是实际上其原理,要比代码复杂得多。


------------EOF--------------


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值