区块链研究实验室 | Plasma Cash区块结构的规范

Plasma Cash推出的最重要的改进之一是“light proofs”。Plasma 结构要求用户下载整个Plasma 链,以确保他们的资金安全。使用Plasma Cash,他们只需下载与自己资金相关的Merkle树枝。

 

这是通过引入一个新的事务有效性条件来实现的:特定CoinID的事务只在Merkle树的CoinIdth叶中有效。因此,只下载该分支就足够确信该硬币不存在有效的交易。这个方案的问题在于,交易是“卡”在这个面额上的:如果你想交易多个硬币,你需要多个交易。

 

如果我们将基于范围的事务放入常规Merkle树的分支中,则light proofs就变得不安全。这是因为有一个分支并不能保证其他分支不相交:

 

第4和第6叶都描述了范围内的交易(3,4)。有一个分支并不保证另一个分支不存在。

 

使用常规Merkle树,保证没有其他分支相交的唯一方法是将它们全部下载并检查。但那已经不再是light proofs!

 

我们的Plasma实现的核心是一个新的块结构,以及一个伴随的新事务有效性条件,它允许我们为基于范围的事务获得light proofs。块结构称为Merkle sum树,其中每个散列旁边是和值。

 

新的有效性条件使用特定分支的和值来计算开始和结束范围。这种计算是经过精心设计的,因此两个分支的计算范围不可能重叠。转移只有在其自身范围在该范围内时才有效,因此这将使我们返回我们的轻客户!

 

本节将详细说明sum tree的规范、范围计算的内容以及如何实际构造满足范围的sum tree。

 

我们已经编写了Plasma-Merkle sum tree的两个实现方法:一个是在操作员的数据库中完成,另一个是在内存中用于在Plasma实用程序中测试。

 

sum tree 节点规范

 

Merkle sum树中的每个节点都是48个字节,如下所示:

 

[32 byte hash][16 byte sum]

 

总和的16字节长度与coinID相同并不是巧合!

 

我们有两个辅助属性,.hash和.sum,这两个属性将引出这两个部分。

 

例如,对于somenode = 0x1b2e79791f28c27ed669f257397e1deb3e522cf1f27024c161b619d276a25315ffffffffffffffffffffffffffffffffff

 

我们有node.hash == 0x1b2e79791f28c27ed669f257397e1deb3e522cf1f27024c161b619d276a25315和node.sum == 0xffffffffffffffffffffffffffffffffff。

 

 

父级计算

 

在一个规则的merkle树中,我们构造一个哈希节点的二叉树,直到一个根节点。指定和树格式是一个简单的问题,即定义父(左,右)计算函数,该函数接受两个兄弟作为参数。

例如,常规Merkle sum树具有:parent = function(left,right){return Sha3(left.concat(right))}其中Sha3是哈希函数,concat将这两个值附加在一起。

 

若要创建merkle sum tree,父函数还必须连接其子函数的加法运算结果。sum值:

注意parent.hash对每个sibling.sum和hashes是一种承诺:我们对两者的完整96个字节进行哈希处理。

 

计算分支的范围

 

我们使用Merkle sum tree的原因是因为它允许我们计算分支描述的特定范围,并且100%确信不存在其他有效的重叠分支。

 

我们通过在分支上加上左和右和来计算这个范围。在每个父级计算中,将两者初始化为0。如果包含证明指定了右侧的同级,则取right sum+=right.sum;如果将left sum+=left.sum添加到左侧,则取left sum+=left.sum。

 

然后,分支描述的范围是[leftsum,root.sum-rightsum]。请参见以下示例:

 

在本例中,分支6的有效范围是[21+3,36–5)==[24,31]。注意31–24=7,这是叶6的总和值!同样,分支5的有效范围是[21,36-(7+5))==[21,24)。注意它的结束和分支6的开始是一样的!

 

你会发现构造一个Merkle sum tree是不可能的,它有两个不同的分支覆盖相同的范围。在树的某个层面,总和必须被打破!尝试通过制作另一个与范围(4.5,6)相交的分支来“欺骗”叶子5或6。仅填写灰色框中的?

 

 

你会发现,在树的某个层次上,这是不可能的:

 

这就是我们获得轻客户的方式。我们将分支范围称为implicitStart和implicitEnd,因为它们是从包含证明中“隐式地”计算的。我们在plasma-utils中通过calculateRootAndBounds()实现了一个分支检查器,用于测试和客户端证明检查:

在Vyper中使用智能合约

请注意,键入的范围是开始和结束,即完整的16个字节。

 

在常规Merkle树中,我们通过散列“叶子”构建底层节点:

 

 

给定一个带有单个transfera的txa,和值应该是什么?事实证明,不仅仅是transfera.end-transfera.start。原因是,如果传输不接触,它会破坏分支的范围。我们需要“填充”sum值来解释这个间隙,否则root.sum将太小。

 

有趣的是,这是一个非确定性的选择,因为您可以将节点填充到间隙的右侧或左侧。 我们选择了以下“左对齐”方案来将叶子解析为块:

 

我们将最底层的.sum值称为该分支的parsedSum,而TransferProof模式包含一个.parsedSum值,用于重建底部节点。

 

分支有效性和隐含NoTx

因此,由智能合约检查的分支的有效性条件如下:implicitStart <= transfer.typedStart <transfer.typedEnd <= implicitEnd。注意,在“Plasma CashFlow”中的和树的原始设计中,一些叶子被填充了一个特殊的“notx”事务,以表示范围没有被处理。使用这种格式,不进行交易的钱币仅为[implicitstart,transfer.typedstart]和[transfer.typednd,implicitend]范围内的钱币。智能合约保证这些范围内的硬币不能用于任何挑战或对退出的反应。

 

原子性多发(Atomic Multisends)

通常(为了支持交易费用和交换)交易要求多次转移要么发生或要么不发生,结果是每个.transfer需要包含一次有效的事务 - 每个.transfer都有一个与特定transfer.typedStart和.typedEnd相关的有效总和。但是,对于这些包含中的每一个,它仍然是完整的UnsignedTransaction的哈希 - 而不是被解析到底部的单个Transfer.hash。

本文转载公众号:区块链研究实验室

海纳学院的内容将围绕:区块链技术,产品社群,经济模型等全方位的知识体系输出,为大家带来不一样的社群学习体验。欢迎联系作者微信加入社群:csschan1120

资源下载链接为: https://pan.quark.cn/s/abbae039bf2a 无锡平芯微半导体科技有限公司生产的A1SHB三极管(全称PW2301A)是一款P沟道增强型MOSFET,具备低内阻、高重复雪崩耐受能力以及高效电源切换设计等优势。其技术规格如下:最大漏源电压(VDS)为-20V,最大连续漏极电流(ID)为-3A,可在此条件下稳定工作;栅源电压(VGS)最大值为±12V,能承受正反向电压;脉冲漏极电流(IDM)可达-10A,适合处理短暂高电流脉冲;最大功率耗散(PD)为1W,可防止器件过热。A1SHB采用3引脚SOT23-3封装,小型化设计利于空间受限的应用场景。热特性方面,结到环境的热阻(RθJA)为125℃/W,即每增加1W功率损耗,结温上升125℃,提示设计电路时需考虑散热。 A1SHB的电气性能出色,开关特性优异。开关测试电路及波形图(图1、图2)展示了不同条件下的开关性能,包括开关上升时间(tr)、下降时间(tf)、开启时间(ton)和关闭时间(toff),这些参数对评估MOSFET在高频开关应用中的效率至关重要。图4呈现了漏极电流(ID)与漏源电压(VDS)的关系,图5描绘了输出特性曲线,反映不同栅源电压下漏极电流的变化。图6至图10进一步揭示性能特征:转移特性(图7)显示栅极电压(Vgs)对漏极电流的影响;漏源开态电阻(RDS(ON))随Vgs变化的曲线(图8、图9)展现不同控制电压下的阻抗;图10可能涉及电容特性,对开关操作的响应速度和稳定性有重要影响。 A1SHB三极管(PW2301A)是高性能P沟道MOSFET,适用于低内阻、高效率电源切换及其他多种应用。用户在设计电路时,需充分考虑其电气参数、封装尺寸及热管理,以确保器件的可靠性和长期稳定性。无锡平芯微半导体科技有限公司提供的技术支持和代理商服务,可为用户在产品选型和应用过程中提供有
资源下载链接为: https://pan.quark.cn/s/9648a1f24758 在 JavaScript 中实现点击展开与隐藏效果是一种非常实用的交互设计,它能够有效提升用户界面的动态性和用户体验。本文将详细阐述如何通过 JavaScript 实现这种功能,并提供一个完整的代码示例。为了实现这一功能,我们需要掌握基础的 HTML 和 CSS 知识,以便构建基本的页面结构和样式。 在这个示例中,我们有一个按钮和一个提示框(prompt)。默认情况下,提示框是隐藏的。当用户点击按钮时,提示框会显示出来;再次点击按钮时,提示框则会隐藏。以下是 HTML 部分的代码: 接下来是 CSS 部分。我们通过设置提示框的 display 属性为 none 来实现默认隐藏的效果: 最后,我们使用 JavaScript 来处理点击事件。我们利用事件监听机制,监听按钮的点击事件,并通过动态改变提示框的 display 属性来实现展开和隐藏的效果。以下是 JavaScript 部分的代码: 为了进一步增强用户体验,我们还添加了一个关闭按钮(closePrompt),用户可以通过点击该按钮来关闭提示框。以下是关闭按钮的 JavaScript 实现: 通过以上代码,我们就完成了点击展开隐藏效果的实现。这个简单的交互可以通过添加 CSS 动画效果(如渐显渐隐等)来进一步提升用户体验。此外,这个基本原理还可以扩展到其他类似的交互场景,例如折叠面板、下拉菜单等。 总结来说,JavaScript 实现点击展开隐藏效果主要涉及 HTML 元素的布局、CSS 的样式控制以及 JavaScript 的事件处理。通过监听点击事件并动态改变元素的样式,可以实现丰富的交互功能。在实际开发中,可以结合现代前端框架(如 React 或 Vue 等),将这些交互封装成组件,从而提高代码的复用性和维护性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值