[LeetCode]Validate Binary Search Tree

本文介绍如何通过中序遍历或递归方法验证给定的二叉树是否为有效的二叉搜索树(BST)。重点阐述了BST的定义、序列化方式以及实现算法的详细步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Given a binary tree, determine if it is a valid binary search tree (BST).

Assume a BST is defined as follows:

The left subtree of a node contains only nodes with keys less than the node's key.
The right subtree of a node contains only nodes with keys greater than the node's key.
Both the left and right subtrees must also be binary search trees.
confused what "{1,#,2,3}" means? > read more on how binary tree is serialized on OJ.

OJ's Binary Tree Serialization:
The serialization of a binary tree follows a level order traversal, where '#' signifies a path terminator where no node exists below.

Here's an example:
   1
  / \
 2   3
    /
   4
    \
     5
The above binary tree is serialized as "{1,2,3,#,#,4,#,#,5}".

思路一:二叉树(二叉搜索树)的中序遍历(左中右)应该是递增的序列。
所以只要写一下中序遍历即可。

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    bool isValidBST(TreeNode* root) {
        stack<TreeNode*> sta;
        TreeNode* T=root;
        double left_ele = INT_MIN-1.0;
        while(!sta.empty()||T){
            while(T){
                sta.push(T);
                T=T->left;
            }
            T = sta.top();
            sta.pop();
            if(T->val>left_ele)
                left_ele = T->val;
            else
                return false;
            T =T->right;
        }
        return true;
    }

};

16ms AC

第二种思路就是递归,向左递归时,更新上界;向右递归时,更新下界。

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    bool isValidBST(TreeNode* root) {
        double upper = INT_MAX+1.0;
        double lower = INT_MIN-1.0;
        return check(root, upper,lower);

    }
    bool check(TreeNode* T, double upper, double lower){
        if(!T)
            return true;
        else if(T->val>=upper||T->val<=lower)
                return false;
        return check(T->left,T->val,lower)&check(T->right,upper,T->val);

    }


};

16ms AC

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值