使用matlab交叉验证

帮助文档

crossvalind交叉验证

Generate cross-validation indices  生成交叉验证索引

Syntax语法

Indices = crossvalind('Kfold', N, K) K折交叉
[Train, Test] = crossvalind('HoldOut', N, P)
[Train, Test] = crossvalind('LeaveMOut', N, M)留M法交叉验证,默认M为1,留一法交叉验证
[Train, Test] = crossvalind('Resubstitution', N, [P,Q])
[...] = crossvalind(Method, Group, ...)
[...] = crossvalind(Method, Group, ..., 'Classes', C)
[...] = crossvalind(Method, Group, ..., 'Min', MinValue)

Description描述

Indices = crossvalind('Kfold', N, K) returns randomly generated indices for a K-fold cross-validation ofN observations.Indices contains equal (or approximately equal) proportions of the integers1 throughK that define a partition of the N observations intoK disjoint subsets. Repeated calls return different randomly generated partitions.K defaults to5 when omitted. In K-fold cross-validation, K-1 folds are used for training and the last fold is used for evaluation. This process is repeatedK times, leaving one different fold for evaluation each time.

[Train, Test] = crossvalind('HoldOut', N, P) returns logical index vectors for cross-validation ofN observations by randomly selectingP*N (approximately) observations to hold out for the evaluation set.P must be a scalar between0 and 1. P defaults to 0.5 when omitted, corresponding to holding50% out. Using holdout cross-validation within a loop is similar to K-fold cross-validation one time outside the loop, except that non-disjointed subsets are assigned to each evaluation.

-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

LeaveMOut

[Train, Test] = crossvalind('LeaveMOut', N, M), where M is an integer, returns logical index vectors for cross-validation ofN observations by randomly selectingM of the observations to hold out for the evaluation set.M defaults to1 when omitted. Using 'LeaveMOut' cross-validation within a loop does not guarantee disjointed evaluation sets. To guarantee disjointed evaluation sets, use'Kfold' instead.

M是整数,返回交叉索引逻辑索引向量,其中N个观测值,从N个观测值中随机选取M个观测值保留作为验证集,其余作为训练集。省略时,M默认为1,即留一法交叉验证。
在一个循环中使用LeaveMOut交叉验证不保证不连贯的验证集.为保证非连贯的验证集,使用K-fold方法替换。

Approximate a leave-one-out prediction error estimate. 拟合一个留一法交叉验证预测误差估计

load carbig
x = Displacement; y = Acceleration;
% x为轿车形状的大小,y为轿车轿车速度从0到60公里所用时间
N = length(x);
% N为x长度=406
sse = 0;
for i = 1:100
    [train,test] = crossvalind('LeaveMOut',N,1);
    yhat = polyval(polyfit(x(train),y(train),2),x(test));
    sse = sse + sum((yhat - y(test)).^2);
end
CVerr = sse / 100
% sse=353.10 CVerr交叉验证误差为sse/100=3.5310 
CVerr =

    4.9750


 polyfit(x(train),y(train),2)   x为横坐标,y为纵坐标,拟合2次多项式

polyfit 输出是一个多项式系数的行向量,从左到右表示从高次到低次的多项式系数。2 1 0次

y = polyval(p,x)
返回n次 多项式在x处的值。输入变量p是一个长度为n+1的向量,其元素为按 降幂排列的多项式系数。
y=p1*x^n+p2*x^(n-1)+...+pn*x+p(n+1)
x可以是一个 矩阵或者一个向量,在这两种情况下,polyval计算在X中任意元素处的多项式p的估值。

计算均方误差(估值减去观测值的平方)之和。

进行了100次交叉验证,除以总次数100,为单次均方误差。

模型的均方误差越小,拟合的越好。

其中carbig.mat是一个各国轿车的统计数据,总计406辆轿车。

这里:
Accelaration: 轿车速度从0到60公里所用时间
Cylinders:    轿车的汽缸数
Displacement:轿车形状的大小
Horsepower:轿车的马力
MPG:             每加仑汽油行驶的里程
Model:          轿车的型号
Model_year:那一年代的模型
Origin:          轿车产自那里
Weight:        轿车的重量
其中有些是数据型变量,有些是字符型变量。

 

>> x=1:10

x =

     1     2     3     4     5     6     7     8     9    10

>> y=sin(x)

y =

  Columns 1 through 8

    0.8415    0.9093    0.1411   -0.7568   -0.9589   -0.2794    0.6570    0.9894

  Columns 9 through 10

    0.4121   -0.5440

 
>> [train,test]=crossvalind('LeaveMOut',10,1);
>> train

train =

     1
     1
     1
     1
     0
     1
     1
     1
     1
     1

>> test

test =

     0
     0
     0
     0
     1
     0
     0
     0
     0
     0

>> [train,test]=crossvalind('LeaveMOut',10,2);
>> train

train =

     1
     0
     1
     1
     1
     1
     1
     1
     1
     0

>> test

test =

     0
     1
     0
     0
     0
     0
     0
     0
     0
     1


----------------------------------------------------------------------------

[Train, Test] = crossvalind('Resubstitution', N, [P,Q]) returns logical index vectors of indices for cross-validation ofN observations by randomly selectingP*N observations for the evaluation set andQ*N observations for training. Sets are selected in order to minimize the number of observations that are used in both sets.P andQ are scalars between 0 and 1. Q=1-P corresponds to holding out (100*P)%, whileP=Q=1 corresponds to full resubstitution.[P,Q] defaults to [1,1] when omitted.

[...] = crossvalind(Method, Group, ...) takes the group structure of the data into account.Group is a grouping vector that defines the class for each observation.Group can be a numeric vector, a string array, or a cell array of strings. The partition of the groups depends on the type of cross-validation: For K-fold, each group is divided intoK subsets, approximately equal in size. For all others, approximately equal numbers of observations from each group are selected for the evaluation set. In both cases the training set contains at least one observation from each group.

[...] = crossvalind(Method, Group, ..., 'Classes', C) restricts the observations to only those values specified inC.C can be a numeric vector, a string array, or a cell array of strings, but it is of the same form asGroup. If one output argument is specified, it contains the value0 for observations belonging to excluded classes. If two output arguments are specified, both will contain the logical value false for observations belonging to excluded classes.

[...] = crossvalind(Method, Group, ..., 'Min', MinValue) sets the minimum number of observations that each group has in the training set.Min defaults to1. Setting a large value for Min can help to balance the training groups, but adds partial resubstitution when there are not enough observations. You cannot setMin when using K-fold cross-validation.

Examples

Create a 10-fold cross-validation to compute classification error.

load fisheriris 
indices = crossvalind('Kfold',species,10);
cp = classperf(species);
for i = 1:10
    test = (indices == i); train = ~test;
    class = classify(meas(test,:),meas(train,:),species(train,:));
    classperf(cp,class,test)
end
cp.ErrorRate

Divide cancer data 60/40 without using the 'Benign' observations. Assume groups are the true labels of the observations.

labels = {'Cancer','Benign','Control'};
groups = labels(ceil(rand(100,1)*3));
[train,test] = crossvalind('holdout',groups,0.6,'classes',...
                           {'Control','Cancer'});
sum(test) % Total groups allocated for testing

ans =

    35

sum(train) % Total groups allocated for training

ans =

    26

函数原型

function [tInd,eInd] = crossvalind(method,N,varargin)
%CROSSVALIND generates cross-validation indices 按比例取出每次交叉验证的索引
% each time.
%
% [TRAIN,TEST] = CROSSVALIND('HoldOut',N,P) returns logical index vectors 返回逻辑索引向量
%
% [TRAIN,TEST] = CROSSVALIND('LeaveMOut',N,M), where M is an integer,
% returns logical index vectors for cross-validation of N observations by
% randomly selecting M of the observations to hold out for the evaluation
% set. M defaults to 1 when omitted. Using LeaveMOut cross-validation
% within a loop does not guarantee disjointed evaluation sets. Use K-fold
% instead.
% M是整数,返回交叉索引逻辑索引向量,其中N个观测值,随机选取M个观测值保留作为验证集,其余作为训练集
% 省略时,M默认为1,即留一法交叉验证。
% 在一个循环中使用LeaveMOut交叉验证不保证不连贯的验证集.使用K-fold方法替换
% [TRAIN,TEST] = CROSSVALIND('Resubstitution',N,[P,Q]) returns logical
% index vectors of indices for cross-validation of N observations by
% randomly selecting P*N observations for the evaluation set and Q*N
% observations for training. Sets are selected in order to minimize the
% number of observations that are used in both sets. P and Q are scalars
% between 0 and 1. Q=1-P corresponds to holding out (100*P)%, while P=Q=1
% corresponds to full resubstitution. [P,Q] defaults to [1,1] when omitted.
%
% [...] = CROSSVALIND(METHOD,GROUP,...) takes the group structure of the
% data into account. GROUP is a grouping vector that defines the class for
% each observation. GROUP can be a numeric vector, a string array, or a
% cell array of strings. The partition of the groups depends on the type
% of cross-validation: For K-fold, each group is divided into K subsets,
% approximately equal in size. For all others, approximately equal
% numbers of observations from each group are selected for the evaluation
% set. In both cases the training set will contain at least one
% observation from each group.
%
% [...] = CROSSVALIND(METHOD,GROUP,...,'CLASSES',C) restricts the
% observations to only those values specified in C. C can be a numeric
% vector, a string array, or a cell array of strings, but it is of the
% same form as GROUP. If one output argument is specified, it will
% contain the value 0 for observations belonging to excluded classes. If
% two output arguments are specified, both will contain the logical value
% false for observations belonging to excluded classes.
%
% [...] = CROSSVALIND(METHOD,GROUP,...,'MIN',MIN) sets the minimum number
% of observations that each group has in the training set. MIN defaults
% to 1. Setting a large value for MIN can help to balance the training
% groups, but adds partial resubstitution when there are not enough
% observations. You cannot set MIN when using K-fold cross-validation.
%
% Examples:示例
%
% % Create a 10-fold cross-validation to compute classification error.十折交叉验证 计算分类误差
% 将样本打乱,然后均匀分成K份,轮流选择其中K-1份训练,剩余的一份做验证,计算预测误差平方和,
% 最后把K次的预测误差平方和再做平均作为选择最优模型结构的依据。这里取K=10
% 特别的K取N,就是留一法(leave one out)。
%
% load fisheriris
% indices = crossvalind('Kfold',species,10);
% cp = classperf(species);
% for i = 1:10
% test = (indices == i); train = ~test;
% class = classify(meas(test,:),meas(train,:),species(train,:));
% classperf(cp,class,test)
% end
% cp.ErrorRate
%
% % Approximate a leave-one-out prediction error estimate.
% load carbig
% x = Displacement; y = Acceleration;
% N = length(x);
% sse = 0;
% for i = 1:100
% [train,test] = crossvalind('LeaveMOut',N,1);
% yhat = polyval(polyfit(x(train),y(train),2),x(test));
% sse = sse + sum((yhat - y(test)).^2);
% end
% CVerr = sse / 100
%
% % Divide cancer data 60/40 without using the 'Benign' observations.
% % Assume groups are the true labels of the observations.
% labels = {'Cancer','Benign','Control'};
% groups = labels(ceil(rand(100,1)*3));
% [train,test] = crossvalind('holdout',groups,0.6,'classes',...
% {'Control','Cancer'});
% sum(test) % Total groups allocated for testing
% sum(train) % Total groups allocated for training
%
% See also CLASSPERF, CLASSIFY, GRP2IDX, KNNCLASSIFY, SVMCLASSIFY.

% References:
% [1] Hastie, T. Tibshirani, R, and Friedman, J. (2001) The Elements of
% Statistical Learning, Springer, pp. 214-216.
% [2] Theodoridis, S. and Koutroumbas, K. (1999) Pattern Recognition,
% Academic Press, pp. 341-342.

% Copyright 2003-2008 The MathWorks, Inc.
% $Revision: 1.1.10.5 $ $Date: 2008/06/16 16:32:40 $

% set defaults
classesProvided = false;
MG = 1; % default for minimum number of observations for every training group
P = 0.5; % default value for holdout
K = 5; % default value for Kfold
M = 1; % default value for leave-M-out
Q = [1 1];% default value for resubstitution

% get and validate the method (first input)
if ischar(method) && size(method,1)==1
validMethods = {'holdout','kfold','resubstitution','leavemout'};
method = strmatch(lower(method),validMethods); 
if isempty(method)
error('Bioinfo:crossvalind:NotValidMethod',...
'Not a valid method.')
end
method = validMethods{method};
else
error('Bioinfo:crossvalind:NotValidTypeForMethod',...
'Valid methods are ''KFold'', ''HoldOut'', ''LeaveMOut'', or ''Resubstitution''.')
end

if nargout>1 && isequal(method,'kfold')
error('Bioinfo:crossvalind:TooManyOutputArgumentsForKfold',...
'To many output arguments for Kfold cross-validation.')
end

% take P,K,Q, or M if provided by the third input (first varargin) and
% validate it
if numel(varargin) && isnumeric(varargin{1})
S = varargin{1};
varargin(1)=[];
switch method
case 'holdout'
if numel(S)==1 && S>0 && S<1
P = S;
else
error('Bioinfo:crossvalind:InvalidThirdInputP',...
'For hold-out cross-validation, the third input must be a scalar between 0 and 1.');
end
case 'kfold'
if numel(S)==1 && S>=1
K = round(S);
else
error('Bioinfo:crossvalind:InvalidThirdInputK',...
'For Kfold cross-validation, the third input must be a positive integer.');
end
case 'leavemout'
if numel(S)==1 && S>=1
M = round(S);
else
error('Bioinfo:crossvalind:InvalidThirdInputM',...
'For leave-M-out cross-validation, the third input must be a positive integer.');
end
case 'resubstitution'
if numel(S)==2 && all(S>0) && all(S<=1)
Q = S(:);
else
error('Bioinfo:crossvalind:InvalidThirdInputQ',...
'For resubstitution cross-validation, the third input must be a 2x1 vector with values between 0 and 1.');
end
end %switch
end

% read optional paired input arguments in
if numel(varargin)
if rem(numel(varargin),2)
error('Bioinfo:crossvalind:IncorrectNumberOfArguments',...
'Incorrect number of arguments to %s.',mfilename);
end
okargs = {'classes','min'};
for j=1:2:numel(varargin)
pname = varargin{j};
pval = varargin{j+1};
k = find(strncmpi(pname, okargs,length(pname)));
if isempty(k)
error('Bioinfo:crossvalind:UnknownParameterName',...
'Unknown parameter name: %s.',pname);
elseif length(k)>1
error('Bioinfo:crossvalind:AmbiguousParameterName',...
'Ambiguous parameter name: %s.',pname);
else
switch(k)
case 1 % classes
classesProvided = true;
classes = pval;
case 2 % min
MG = round(pval(1));
if MG<0
error('Bioinfo:crossvalind:NotValidMIN',...
'MIN must be a positive scalar.')
end
end
end
end
end

if isscalar(N) && isnumeric(N)
if N<1 || N~=floor(N)
error('Bioinfo:crossvalind:NNotPositiveInteger',...
'The number of observations must be a positive integer.');
end
group = ones(N,1);
else
[group, groupNames] = grp2idx(N); % at this point group is numeric only
N = numel(group);
end

if classesProvided
orgN = N;
% change classes to same type as groups
[dummy,classes]=grp2idx(classes);
validGroups = intersect(classes,groupNames);
if isempty(validGroups)
error('bioinfo:crossvalind:EmptyValidGroups',...
'Could not find any valid group. Are CLASSES the same type as GROUP ?')
end
selectedGroups = ismember(groupNames(group),validGroups);
group = grp2idx(group(selectedGroups)); % group idxs are reduced to only the sel groups
N = numel(group); % the new size of the reduced vector
end

nS = accumarray(group(:),1);
if min(nS)<MG
error('Bioinfo:crossvalind:MissingObservations',...
'All the groups must have at least least MIN obeservation(s).')
end

switch method
case {'leavemout','holdout','resubstitution'}
switch method
case 'leavemout'
% number of samples for holdout in every group
nSE = repmat(M,numel(nS),1);
% at least there is MG sample(s) for training in every group
nST = max(nS-nSE,MG);
case 'holdout'
% computes the number of samples for holdout in every group
nSE = floor(nS*P);
% at least there is MG sample(s) for training in every group
nST = max(nS-nSE,MG);
case 'resubstitution'
% computes the number of samples for training and evaluation
nSE = floor(nS*Q(1));
nST = floor(nS*Q(2));
% at least there is MG sample(s) for training in every group
nST = max(nST,MG);
end
% Initializing the outputs
tInd = false(N,1);
eInd = false(N,1);
% for every group select randomly the samples for both sets
for g = 1:numel(nS)
h = find(group==g);
randInd = randperm(nS(g));
tInd(h(randInd(1:nST(g))))=true;
eInd(h(randInd(end-nSE(g)+1:end)))=true;
end
case 'kfold'
tInd = zeros(N,1);
for g = 1:numel(nS)
h = find(group==g);
% compute fold id's for every observation in the group
q = ceil(K*(1:nS(g))/nS(g));
% and permute them to try to balance among all groups
pq = randperm(K);
% randomly assign the id's to the observations of this group
randInd = randperm(nS(g));
tInd(h(randInd))=pq(q);
end
end

if classesProvided
if isequal(method,'kfold')
temp = zeros(orgN,1);
temp(selectedGroups) = tInd;
tInd = temp;
else
temp = false(orgN,1);
temp(selectedGroups) = tInd;
tInd = temp;
temp = false(orgN,1);
temp(selectedGroups) = eInd;
eInd = temp;
end
end


<think>嗯,用户想了解MATLAB中的交叉验证,我需要详细解释清楚。首先,得从交叉验证的基本概念讲起,确保用户明白它的作用和常见类型。然后,具体到MATLAB的实现,应该提到相关的函数和工具,比如cvpartition、crossval,还有几个常用函数如fitctree的交叉验证。 需要分步骤说明,比如数据划分、模型训练和验证。可能要举个分类问题的例子,用具体代码展示流程,这样用户更容易理解。同时,注意事项部分要提醒用户随机性、数据平衡、计算资源和过拟合问题,这些都很重要。 得检查LaTeX格式是否正确,比如行内公式用$...$,独立公式用$$...$$,并且确保数学符号正确。比如交叉验证的均方误差公式要用独立公式,可能需要用$$MSE = \frac{1}{k} \sum_{i=1}^k MSE_i$$这样的格式。 另外,要使用中文回答,结构清晰,每步都帮助用户逐步理解。可能需要确认提到的函数在最新版本的MATLAB中是否仍然适用,避免过时的信息。还要注意解释每个步骤的目的,比如为什么需要划分训练集和测试集,交叉验证如何减少过拟合等。 可能用户是刚开始学习机器学习,所以语言要尽量通俗,避免太专业的术语,或者在必要时解释术语。比如,解释k折交叉验证时,可以说将数据分成k个子集,每次用k-1个训练,1个验证,循环k次。这样用户更容易想象过程。 最后,确保代码示例正确,比如使用cvpartition创建分区,然后用循环来处理每折,计算误差。同时,提醒用户替换自己的模型和评估指标,增加适用性。还要注意代码中的注释,帮助用户理解每行在做什么。 总结下,回答的结构应该是:定义交叉验证,常见类型,MATLAB实现步骤,示例代码,注意事项。每个部分都要简明扼要,重点突出,确保用户能够跟着步骤操作,并理解背后的原理。</think>好的!我将分步骤为您介绍MATLAB中的交叉验证(Cross-Validation),帮助您理解其原理和实现方。 --- ### 交叉验证的基本概念 **交叉验证**是种评估机器学习模型泛化能力的统计方,核心思想是通过**重复划分数据集**来减少模型评估的随机性误差。常见类型包括: 1. **k折交叉验证**(k-Fold):将数据分为$k$个子集,每次用$k-1$个子集训练,剩余1个验证,循环$k$次 2. ****(LOOCV):k折的特例,$k$等于样本数 3. **分层交叉验证**:保持各类别样本比例致 4. **时间序列交叉验证**:针对时序数据的特殊划分方式 --- ### 二、MATLAB实现交叉验证的步骤 #### 1. 数据准备 ```matlab load fisheriris; % 示例数据:鸢尾花数据集 X = meas; % 特征矩阵 Y = species; % 标签 ``` #### 2. 划分数据集 使用`cvpartition`函数: ```matlab k = 5; % 设置k值 cv = cvpartition(Y, 'KFold', k); % 分层k折划分(保持类别比例) ``` #### 3. 模型训练与验证 以分类树为例: ```matlab for i = 1:k % 获取训练集/验证集索引 trainIdx = training(cv, i); testIdx = test(cv, i); % 训练模型 model = fitctree(X(trainIdx,:), Y(trainIdx)); % 验证模型 pred = predict(model, X(testIdx,:)); accuracy(i) = sum(pred == Y(testIdx)) / numel(testIdx); end % 计算平均准确率 mean_accuracy = mean(accuracy); ``` #### 4. 快捷方使用`crossval`) ```matlab model = fitctree(X, Y); cvModel = crossval(model, 'KFold', 5); loss = kfoldLoss(cvModel); % 计算平均损失 ``` --- ### 三、关键函数说明 1. **`cvpartition`** - 创建数据划分方案 - 支持参数:`'KFold'`, `'HoldOut'`, `'LeaveOut'` 2. **`crossval`** - 自动执行交叉验证流程 - 支持各类分类/回归模型 3. **`kfoldLoss`/`kfoldPredict`** - 获取交叉验证结果 - 可计算损失函数或预测值 --- ### 四、示例:回归问题的交叉验证 ```matlab % 生成数据 X = rand(100,3); y = X*[1;2;3] + randn(100,1); % 线性回归模型交叉验证 model = fitlm(X, y); cv = crossval(model, 'KFold', 5); % 计算均方误差 mse = kfoldLoss(cv, 'LossFun', 'mse'); ``` --- ### 五、注意事项 1. **随机性控制**:使用`rng`设置随机种子保证可重复性 ```matlab rng(42); % 固定随机数生成器 ``` 2. **数据平衡**:分类问题建议使用分层交叉验证(`cvpartition`自动实现) 3. **计算效率**:大数据集时适当降低$k$值(常用$k=5$或$k=10$) 4. **过拟合检测**:若训练误差远小于验证误差,可能存在过拟合 --- ### 六、数学原理(k折交叉验证) 验证误差的均方误差计算公式: $$ MSE = \frac{1}{k} \sum_{i=1}^k MSE_i $$ 其中$MSE_i$是第$i$次验证的均方误差。 --- 通过以上步骤,您可以灵活运用MATLAB实现交叉验证,有效评估模型的泛化性能。实际应用中可根据数据类型(分类/回归/时序)选择合适的交叉验证
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值