[PAT甲级]1007. Maximum Subsequence Sum(求连续最大子序列和)

本文介绍了一种求解最大连续子序列和的算法,并通过示例解释了如何找到具有最大和的连续子序列及其起始和结束元素。特别地,讨论了在所有数均为负数情况下的特殊处理。

1007. Maximum Subsequence Sum

原题链接

Given a sequence of K integers { N1, N2, …, NK }. A continuous subsequence is defined to be { Ni, Ni+1, …, Nj } where 1 <= i <= j <= K. The Maximum Subsequence is the continuous subsequence which has the largest sum of its elements. For example, given sequence { -2, 11, -4, 13, -5, -2 }, its maximum subsequence is { 11, -4, 13 } with the largest sum being 20.

Now you are supposed to find the largest sum, together with the first and the last numbers of the maximum subsequence.

Input Specification:

Each input file contains one test case. Each case occupies two lines. The first line contains a positive integer K (<= 10000). The second line contains K numbers, separated by a space.

Output Specification:

For each test case, output in one line the largest sum, together with the first and the last numbers of the maximum subsequence. The numbers must be separated by one space, but there must be no extra space at the end of a line. In case that the maximum subsequence is not unique, output the one with the smallest indices i and j (as shown by the sample case). If all the K numbers are negative, then its maximum sum is defined to be 0, and you are supposed to output the first and the last numbers of the whole sequence.

Sample Input:

10
-10 1 2 3 4 -5 -23 3 7 -21

Sample Output:

10 1 4

题目大意:

  • 给一个数组,数组长度k<=10000,找出和最大的连续子序列
  • 输出该子序列和,开始元素,结束元素
  • 若数组全是负数,定义和为0,同时输出数组第一个元素和最后一个元素

思路:

  • sum 最大连续子序列和
  • tempsum 临时的连续子序列和
  • left 最大子序列左下标
  • right 最大子序列右下标
  • index 临时的序列左下标
  • tempsum += arr[i],当tempsum >sum,就更新sum的值、left和right的值;当tempsum小于sum且小于0时,舍弃前面的序列,重新定义tempsum和index

代码:

#include <iostream>
#include <vector>
#include <cstdio>
using namespace std;

int main()
{
    int n;
    cin >> n;
    vector<int> arr(n);
    int sum=-1;//最大连续子序列和
    int tempsum=0;//临时的连续子序列和
    int left=0;//最大子序列左下标
    int right=0;//最大子序列右下标
    int index=0;//临时的序列左下标
    bool flag = true;//检验是否全是负数
    for(int i=0; i<n; i++){
        scanf("%d", &arr[i]);
        if(arr[i] >= 0)
            flag = false;
        tempsum += arr[i];
        if(tempsum > sum){
            sum = tempsum;
            left = index;
            right = i;
        }else if(tempsum < 0){//如果临时序列和已经小于sum的情况下还是负数,应该舍弃之前的序列
            index = i+1;
            tempsum = 0;
        }
    }
    if(flag){
        printf("0 %d %d", arr[0], arr[n-1]);
    }else{
        printf("%d %d %d", sum, arr[left], arr[right]);
    }
    return 0;
}
### 最大子序列问题的解决方法 最大子序列问题是经典的算法问题之一,目标是从给定数组中找到一个连续子序列,使得该子序列中的元素之达到最大值。以下是基于动态规划的思想实现的一个高效解决方案。 #### 动态规划法 通过维护两个变量 `current_sum` `max_sum` 来记录当前子序列最大以及全局范围内的最大。遍历整个数组一次即可完成计算: ```python def max_subsequence_sum(nums): current_sum = 0 max_sum = float('-inf') # 初始化为负无穷大 for num in nums: current_sum = max(num, current_sum + num) # 更新当前子序列 max_sum = max(max_sum, current_sum) # 更新全局最大 return max_sum ``` 上述代码的时间复杂度为 \(O(n)\),其中 \(n\) 是输入表的长度[^1]。 #### 示例运行 假设我们有如下输入数据: ```python nums = [-2, 1, -3, 4, -1, 2, 1, -5, 4] result = max_subsequence_sum(nums) print(result) # 输出应为6 (子序列为 [4,-1,2,1]) ``` 此方法的核心在于每次迭代都决定是否将当前数加入到现有子序列或者重新开始一个新的子序列。 #### 非连续子序列的情况 如果允许选取非连续子序列,则可以采用贪心策略来解决问题。对于这个问题的具体实现方式已经在 JavaScript 的例中有体现。然而,在 Python 中可以通过简单的排序加累加操作快速得到结果: ```python def non_contiguous_max_subsequence_sum(nums): positive_nums = sorted([num for num in nums if num > 0], reverse=True) total = sum(positive_nums) return total if total != 0 else max(nums) # 测试用例 nums = [7, 2, -8, 4, 10, -2] result = non_contiguous_max_subsequence_sum(nums) print(result) # 应输出23 ``` 这里需要注意的是当所有数值均为负数时需单独处理以确保返回最大的单个元素作为结果。 ### 结论 无论是针对连续还是非连续情况下的最大子序列问题都可以借助不同的优化手段有效解决。前者依赖于线性的扫描过程而后者则可能涉及更复杂的逻辑判断或额外的数据结构支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值