一带一路

王洛林

背景

  1. WTO受限(要民主,协商一致),多哈回合停顿
    在多边、双边体系发展不完善;
    构建成员较少的多边贸易体系;
    TPP, TTIP

  2. 要素成本上升

  3. 国际社会对中国的认知和期待、要求

  4. 全球能源结构
    美国页岩油、气,油气依赖度30%,中国60%;
    美国对地缘政治的后顾之忧下降(中东);
    需合理布局能源进口的来源(减轻对马六甲海峡的过度依赖)

  5. 周边地缘政治变坏,形势严峻
    美国提出“亚太再平衡”,日本(抑制中国,美国支持军备) 菲律宾 越南(岛链封锁)

  6. 经济体制不平衡、不协调
    东南沿海与中西部


内涵

在广大腹地国家共建经济合作带

  1. 一带:3条 (蒙古 俄罗斯 东欧)(中亚 西亚 中东 欧洲)(巴基斯坦 伊朗 中东 欧洲)
  2. 一路:2条 海上

原则

  1. 对接 对内是战略,对外国来说是倡议,需将这个倡议与外国战略相衔接;
  2. 共建
  3. 互联互通 优先搞基础设施建设
  4. 互利共赢

机遇

  1. 丝绸之路有民心基础
  2. 一带一路沿线国家总体上与中国关系良好
  3. 产业结构一定程度上互补
  4. 经济合作,避免与大国冲突,淡化军事、意识形态冲突

挑战

  1. 沿线地区地缘政治复杂
  2. 部分国家政局不稳
  3. 对中国期望值过高,想搭便车
  4. 国内体制风险:大型国有企业

政策思考

  1. 战略实施推动国内体制改革(国企改革);
  2. 推动国内中西部全方位对外开放;(新疆、福建)
  3. 将一带一路与自贸区试验衔接;

严重缺乏对沿线国家的研究:阿拉伯语人才,了解伊斯兰教、中亚、西亚的人才


内容概要:本文介绍了基于Python实现的SSA-GRU(麻雀搜索算法优化门控循环单元)时间序列预测项目。项目旨在通过结合SSA的全局搜索能力和GRU的时序信息处理能力,提升时间序列预测的精度和效率。文中详细描述了项目的背景、目标、挑战及解决方案,涵盖了从数据预处理到模型训练、优化及评估的全流程。SSA用于优化GRU的超参数,如隐藏层单元数、学习率等,以解决传统方法难以捕捉复杂非线性关系的问题。项目还提供了具体的代码示例,包括GRU模型的定义、训练和验证过程,以及SSA的种群初始化、迭代更新策略和适应度评估函数。; 适合人群:具备一定编程基础,特别是对时间序列预测和深度学习有一定了解的研究人员和技术开发者。; 使用场景及目标:①提高时间序列预测的精度和效率,适用于金融市场分析、气象预报、工业设备故障诊断等领域;②解决传统方法难以捕捉复杂非线性关系的问题;③通过自动化参数优化,减少人工干预,提升模型开发效率;④增强模型在不同数据集和未知环境中的泛化能力。; 阅读建议:由于项目涉及深度学习和智能优化算法的结合,建议读者在阅读过程中结合代码示例进行实践,理解SSA和GRU的工作原理及其在时间序列预测中的具体应用。同时,关注数据预处理、模型训练和优化的每个步骤,以确保对整个流程有全面的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值