Hadoop-yarn

1.1 YARN 基本架构

YARN是Hadoop 2.0中的资源管理系统,它的基本设计思想是将MRv1中的JobTracker拆分成了两个独立的服务:一个全局的资源管理器ResourceManager和每个应用程序特有的ApplicationMaster。

其中ResourceManager负责整个系统的资源管理和分配,而ApplicationMaster负责单个应用程序的管理。

1.2 YARN基本组成结构

YARN总体上仍然是Master/Slave    结构,在整个资源管理框架中,ResourceManager为Master,NodeManager为Slave,ResourceManager负责对各个NodeManager上的资源进行统一管理和调度。当用户提交一个应用程序时,需要提供一个用以跟踪和管理这个程序的ApplicationMaster,它负责向ResourceManager申请资源,并要求NodeManger启动可以占用一定资源的任务。由于不同的ApplicationMaster被分布到不同的节点上,因此它们之间不会相互影响。在本小节中,我们将对YARN的基本组成结构进行介绍。

图2-9描述了YARN的基本组成结构,YARN主要由ResourceManager、NodeManager、ApplicationMaster(图中给出了MapReduce和MPI两种计算框架的ApplicationMaster,分别为MR AppMstr和MPI AppMstr)和Container等几个组件构成。

1.ResourceManager(资源管理)

RM是一个全局的资源管理器,负责整个系统的资源管理和分配。它主要由两个组件构成:调度器(Scheduler)和应用程序管理器(Applications Manager,ASM)。

(1)调度器

        调度器根据容量、队列等限制条件(如每个队列分配一定的资源,最多执行一定数量的作业等),将系统中的资源分配给各个正在运行的应用程序。

        需要注意的是,该调度器是一个“纯调度器”,它不再从事任何与具体应用程序相关的工作,比如不负责监控或者跟踪应用的执行状态等,也不负责重新启动因应用执行失败或者硬件故障而产生的失败任务,这些均交由应用程序相关的ApplicationMaster完成。调度器仅根据各个应用程序的资源需求进行资源分配,而资源分配单位用一个抽象概念“资源容器”(Resource Container,简称Container)表示,Container是一个动态资源分配单位,它将内存、CPU、磁盘、网络等资源封装在一起,从而限定每个任务使用的资源量。此外,该调度器是一个可插拔的组件,用户可根据自己的需要设计新的调度器,YARN提供了多种直接可用的调度器,比如Fair Scheduler和Capacity Scheduler等。

(2)应用程序管理器

        应用程序管理器负责管理整个系统中所有应用程序,包括应用程序提交、与调度器协商资源以启动ApplicationMaster、监控ApplicationMaster运行状态并在失败时重新启动它等。

2.NodeManager(NM)

    NM是每个节点上的资源和任务管理器,一方面,它会
定时地向RM汇报本节点上的资源使用情况和各个Container的运行状态;另一方面,它接收并处理来自AM的Container启动/停止等各种请求


3. ApplicationMaster(应用管理者)

    用户提交的每个应用程序均包含1个AM,主要功能包括:

    与RM调度器协商以获取资源(用Container表示);

    将得到的任务进一步分配给内部的任务;

    与NM通信以启动/停止任务;

    监控所有任务运行状态,并在任务运行失败时重新为任务申请资源以重启任务。

    当前YARN自带了两个AM实现,一个是用于演示AM编写方法的实例程序distributedshell,它可以申请一定数目的Container以并行运行一个Shell命令或者Shell脚本;另一个是运行MapReduce应用程序的AM—MRAppMaster,我们将在第8章对其进行介绍。此外,一些其他的计算框架对应的AM正在开发中,比如Open MPI、Spark等。

4. Container(管理各种资源的)

    Container是YARN中的资源抽象,它封装了某个节点上的多维度资源,如内存、CPU、磁盘、网络等,当AM向RM申请资源时,RM为AM返回的资源便是用Container表示的。YARN会为每个任务分配一个Container,且该任务只能使用该Container中描述的资源。

需要注意的是,Container不同于MRv1中的slot,它是一个动态资源划分单位,是根据应用程序的需求动态生成的。截至本书完成时,YARN仅支持CPU和内存两种资源,且使用了轻量级资源隔离机制Cgroups进行资源隔离。

1.3  YARN模块功能
  
ResourceManager
      1.处理客户端请求
       2.启动/监控AppliactionManager
       3  监控Nodemanager
       4 资源分配和调度
    
   NodeManager
       1  单个节点上的资源管理
       2  处理来自ResourceManager的命令
       3  处理来自ApplicationMaster的命令

   
   ApplicationMaster
    1  数据切分
    2  为应用程序申请资源,并分配给内部任务
    3  任务监控与容错


   Container、
      1 对任务运行环境的抽象,封装的cpu,内存等资源以及环境变量,启动命令等运行相关的信息

### 回答1: Hadoop YARN (Yet Another Resource Negotiator) 是一个基于Hadoop的集群资源管理系统。Hadoop YARN Client是Hadoop YARN中的一部分,它是用来与YARN ResourceManager通信的客户端工具。 Hadoop YARN Client的主要功能是向YARN ResourceManager提交应用程序并获取集群的资源来执行这些应用程序。当一个应用程序需要在Hadoop集群上运行时,开发人员可以使用Hadoop YARN Client来编写和提交应用程序,然后该客户端将应用程序的相关信息发送给YARN ResourceManager。这些应用程序可以是MapReduce程序,也可以是其他类型的应用程序,例如Spark、Flink等。 使用Hadoop YARN Client,开发人员可以指定应用程序所需的计算资源和内存等配置参数。此外,Hadoop YARN Client还可以跟踪应用程序的状态,并显示有关应用程序执行进度和状态的相关信息。如果发生错误或异常,开发人员可以使用Hadoop YARN Client来取消或终止应用程序的执行。 Hadoop YARN Client利用YARN ResourceManager的资源调度功能,将应用程序提交给ResourceManager后,ResourceManager将根据集群的资源情况来分配相应的资源给该应用程序。此外,Hadoop YARN Client还可以与NodeManager通信,以获取有关执行任务的节点的信息,并监视应用程序的进度。 总的来说,Hadoop YARN Client提供了一个方便的方式来提交和管理应用程序的执行,并与YARN ResourceManager和NodeManager进行通信,以获取资源和监视应用程序的状态。通过使用Hadoop YARN Client,开发人员可以更容易地在Hadoop集群上运行和管理各种类型的应用程序。 ### 回答2: Hadoop YARN客户端是Hadoop生态系统中的一个关键组件,用于与YARN资源管理器进行通信,并提交、监控和管理MapReduce作业或其他分布式计算任务YARN(Yet Another Resource Negotiator)是Hadoop的资源管理器,负责集群资源的分配和任务的调度。 Hadoop YARN客户端的主要功能包括作业的提交和监控。当用户想要运行一个MapReduce作业时,他们可以使用YARN客户端来提交该作业。YARN客户端将作业的执行所需要的资源需求和其他相关信息发送给YARN资源管理器。资源管理器根据集群中可用的资源和调度策略来分配资源,并将作业的任务分配给相应的节点上的容器来执行。 同时,YARN客户端还可以监控作业的执行进度和状态。用户可以通过YARN客户端查询和获取作业的相关信息,如已完成的任务数、失败的任务数、运行时间等。这些信息对于实时监控作业的运行状况以及进行作业调优非常有帮助。 此外,YARN客户端还可以用于管理作业的生命周期。用户可以使用YARN客户端来杀死正在运行的作业或取消已提交但未开始执行的作业。这对于当用户不再需要某个作业时或出现意外情况需要中断作业时非常有用。 总之,Hadoop YARN客户端是Hadoop生态系统中负责与YARN资源管理器通信的关键组件。它提供了作业的提交、监控和管理的功能,帮助用户实现高效的分布式计算任务。 ### 回答3: Hadoop-YARN-Client是Hadoop生态系统中的一个组件,它是Hadoop资源管理器(YARN)的客户端库。YARNHadoop的第二代资源管理系统,它的目的是为集群中的各个工作负载提供资源调度和管理服务。 Hadoop-YARN-Client的作用是允许用户通过编程方式与YARN交互,以便向集群提交应用程序,并监控和管理它们的执行。通过Hadoop-YARN-Client,用户可以以编程方式与YARN的应用程序客户端接口(API)进行交互,完成下列任务: 1. 提交应用程序:用户可以使用Hadoop-YARN-Client将一个应用程序提交给YARN。提交应用程序时,需要指定应用程序的类型、优先级、所需资源等信息,并将应用程序的代码和依赖项打包成一个本地或分布式的Jar文件。 2. 监控应用程序:一旦应用程序被提交到YARN,用户可以使用Hadoop-YARN-Client监控应用程序的执行情况。用户可以查询应用程序的状态、进度和资源使用情况等信息。 3. 管理应用程序:用户可以使用Hadoop-YARN-Client管理应用程序的执行。例如,用户可以请求YARN增加或减少分配给应用程序的资源,或者终止应用程序的执行。 总之,Hadoop-YARN-Client是Hadoop生态系统中与YARN交互的关键组件之一。它为用户提供了一种便捷的方式来提交、监控和管理在YARN上执行的应用程序,让用户能够更好地利用集群资源和进行任务调度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值