codeforces 602 E. Kleofáš and the n-thlon (概率dp)

本文介绍了一种算法,用于预测在N-thlon竞赛中参赛者的预期最终排名。该算法利用概率动态规划来计算除目标选手外其他选手可能获得的各种分数组合的概率分布,并据此推算目标选手的期望排名。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

E. Kleofáš and the n-thlon
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

Kleofáš is participating in an n-thlon - a tournament consisting of n different competitions in n different disciplines (numbered 1 throughn). There are m participants in the n-thlon and each of them participates in all competitions.

In each of these n competitions, the participants are given ranks from 1 to m in such a way that no two participants are given the same rank - in other words, the ranks in each competition form a permutation of numbers from 1 to m. The score of a participant in a competition is equal to his/her rank in it.

The overall score of each participant is computed as the sum of that participant's scores in all competitions.

The overall rank of each participant is equal to 1 + k, where k is the number of participants with strictly smaller overall score.

The n-thlon is over now, but the results haven't been published yet. Kleofáš still remembers his ranks in each particular competition; however, he doesn't remember anything about how well the other participants did. Therefore, Kleofáš would like to know his expected overall rank.

All competitors are equally good at each discipline, so all rankings (permutations of ranks of everyone except Kleofáš) in each competition are equiprobable.

Input

The first line of the input contains two space-separated integers n (1 ≤ n ≤ 100) and m (1 ≤ m ≤ 1000) — the number of competitions and the number of participants respectively.

Then, n lines follow. The i-th of them contains one integer xi (1 ≤ xi ≤ m) — the rank of Kleofáš in the i-th competition.

Output

Output a single real number – the expected overall rank of Kleofáš. Your answer will be considered correct if its relative or absolute error doesn't exceed 10 - 9.

Namely: let's assume that your answer is a, and the answer of the jury is b. The checker program will consider your answer correct, if .

Sample test(s)
input
4 10
2
1
2
1
output
1.0000000000000000
input
5 5
1
2
3
4
5
output
2.7500000000000000
input
3 6
2
4
2
output
1.6799999999999999
Note

In the first sample, Kleofáš has overall score 6. Nobody else can have overall score less than 6 (but it's possible for one other person to have overall score 6 as well), so his overall rank must be 1


概率dp,dp[i]表示别人获得i分的概率,dp要用前缀和优化一下,要用滚动数组
/*======================================================
# Author: whai
# Last modified: 2015-11-25 19:17
# Filename: e.cpp
======================================================*/
#include <iostream>
#include <cstdio>
#include <vector>
#include <algorithm>
#include <cstring>
#include <string>
#include <cmath>
#include <set>
#include <map>
#include <queue>
#include <stack>

using namespace std;

#define LL __int64
#define PB push_back
#define P pair<int, int>
#define X first
#define Y second

const int N = 105;
const int M = 1005;

int a[N];

double dp[N * M];

double pre[N * M], tmp_dp[N * M];

void deal(int x, int n, int m) {
	pre[0] = 0;
	for(int i = 1; i <= n * m; ++i) {
		pre[i] = pre[i - 1] + dp[i - 1];
	}
	for(int i = 1; i <= n * m; ++i) {
		tmp_dp[i] = pre[i] - pre[max(0, i - m)];
		if(i >= x) tmp_dp[i] -= dp[i - x];
		tmp_dp[i] /= m - 1;
	}
	dp[0] = 0;
	for(int i = 1; i <= n * m; ++i) {
		dp[i] = tmp_dp[i];
	}
}

void gao(int n, int m) {
	if(m == 1) {
		cout<<1<<endl;
		return ;
	}
	memset(dp, 0, sizeof(dp));
	dp[0] = 1;
	int sum = 0;

	for(int i = 0; i < n; ++i) {
		sum += a[i];
		deal(a[i], n, m);
	}

	double ans = 0;
	for(int i = 1; i < sum; ++i) {
		ans += dp[i];
	}
	ans = ans * (m - 1) + 1;
	printf("%.10f\n", ans);
}

int main() {
	int n, m;
	while(scanf("%d%d", &n, &m) != EOF) {
		for(int i = 0; i < n; ++i) {
			scanf("%d", &a[i]);
		}
		gao(n, m);
	}
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值