Sorting It All Out
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 30315 | Accepted: 10506 |
Description
An ascending sorted sequence of distinct values is one in which some form of a less-than operator is used to order the elements from smallest to largest. For example, the sorted sequence A, B, C, D implies that A < B, B < C and C < D. in this problem, we will
give you a set of relations of the form A < B and ask you to determine whether a sorted order has been specified or not.
Input
Input consists of multiple problem instances. Each instance starts with a line containing two positive integers n and m. the first value indicated the number of objects to sort, where 2 <= n <= 26. The objects to be sorted will be the first n characters of
the uppercase alphabet. The second value m indicates the number of relations of the form A < B which will be given in this problem instance. Next will be m lines, each containing one such relation consisting of three characters: an uppercase letter, the character
"<" and a second uppercase letter. No letter will be outside the range of the first n letters of the alphabet. Values of n = m = 0 indicate end of input.
Output
For each problem instance, output consists of one line. This line should be one of the following three:
Sorted sequence determined after xxx relations: yyy...y.
Sorted sequence cannot be determined.
Inconsistency found after xxx relations.
where xxx is the number of relations processed at the time either a sorted sequence is determined or an inconsistency is found, whichever comes first, and yyy...y is the sorted, ascending sequence.
Sorted sequence determined after xxx relations: yyy...y.
Sorted sequence cannot be determined.
Inconsistency found after xxx relations.
where xxx is the number of relations processed at the time either a sorted sequence is determined or an inconsistency is found, whichever comes first, and yyy...y is the sorted, ascending sequence.
Sample Input
4 6 A<B A<C B<C C<D B<D A<B 3 2 A<B B<A 26 1 A<Z 0 0
Sample Output
Sorted sequence determined after 4 relations: ABCD. Inconsistency found after 2 relations. Sorted sequence cannot be determined.
题目描述:
该题题意明确,就是给定一组字母的大小关系判断他们是否能组成唯一的拓扑序列。是典型的拓扑排序,但输出格式上确有三种形式:
1.该字母序列有序,并依次输出;
2.该序列不能判断是否有序;
3.该序列字母次序之间有矛盾,即有环存在。
而这三种形式的判断是有顺序的:先判断是否有环(3),再判断是否有序(1),最后才能判断是否能得出结果(2)。注意:对于(2)必须遍历完整个图,而(1)和(3)一旦得出结果,对后面的输入就不用做处理了。
#include<stdio.h>
#include<string.h>
int maps[30][30]; //表示点与点之间的连通性
int degree[30]; //记录有向边末端的度
int vist[30]; //存储拓扑排序的顺序
int n,m; //结点数,关系数
int toposort() //拓扑排序
{
int i,j;
int temp[30]; //临时存储各个点的入度
memset(vist,0,sizeof(vist));
for(i=1;i<=n;i++)
{
temp[i]=degree[i];
}
int c=0; //
int tenum,counts; //tenum : 记录入度为0的点,counts: 记录入度为0 的点的数目
int flag=1; //标记变量
for(i=1;i<=n;i++)
{
counts=0;
for(j=1;j<=n;j++)
{
if(!temp[j])
{
counts++;
tenum=j;
}
}
if(counts==0) return 0; //说明有环存在,直接返回
if(counts>1) //说明入度为0 的点不止一个,则不能判断是否有序,则要判断图中是否有环
flag=-1;
vist[c++]=tenum;
temp[tenum]=-1;
for(j=1;j<=n;j++)
{
if(maps[tenum][j]) //所有与tenum有关的点的度减1
temp[j]--;
}
}
return flag;
}
int main()
{
char str[10];
int i;
while(~scanf("%d%d",&n,&m))
{
if(n==0&&m==0) break;
memset(maps,0,sizeof(maps));
memset(degree,0,sizeof(degree));
int flagnum,ats=0;//flagnum: 标记找到环时或找到合法拓扑排序时的标记
for(i=1;i<=m;i++) //ats:判断是否找到环或找到合法拓扑排序
{
scanf("%s",str);
if(ats)
continue;
int a=str[0]-'A'+1;
int b=str[2]-'A'+1;
maps[a][b]=1;
degree[b]++;
int ans=toposort();
if(ans==0) //存在环
{
ats=1;
flagnum=i;
}
else if(ans==1) //已找到合法拓扑排序
{
ats=2;
flagnum=i;
}
}
if(!ats)
{
printf("Sorted sequence cannot be determined.\n");
}
else if(ats==1)
{
printf("Inconsistency found after %d relations.\n",flagnum);
}
else if(ats==2)
{
printf("Sorted sequence determined after %d relations: ",flagnum);
for(i=0;i<n;i++)
{
printf("%c",vist[i]+'A'-1);
}
printf(".\n");
}
}
return 0;
}