人脸检测:MTCNN的训练步骤和样本的处理

采用数据集:

人脸检测和人脸框回归:WIDER_FACE

特征点标定:Celeba

P-net:

P-net的任务是人脸检测和人脸框回归,所以该阶段仅需要使用WIDER FACE数据集。为什么没带特征点标定任务?P-net输入12*12的图像,图像太小,不适合做特征点标定,我个人理解是loss函数根据人脸带不带关键点来训练的;其实widerface和celeb都是用了,第一阶段到第三阶段都使用;

(1)取候选窗,生成训练图片

下载的原始数据集并不能直接用于训练,而是在原始图像上截取候选框图像。随机截取候选框,根据IoU计算候选框所属类别,并将其resize到12*12大小,将resize后的候选框图像保存到对应的类别文件夹下。每个类别生成一个txt文档,存放图片路径以及对应的候选框位置信息。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值