Scalable Architectures

本文深入探讨了可扩展架构的概念及其实现方法,包括线性可扩展性、垂直和水平可扩展性,以及如何通过任务并行化来提高系统性能。详细解释了不同可扩展性要求下软件开发者的最佳实践。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Scalable Architectures

A scalable architecture is an architecture that can scale up to meet increased work loads. In other words, if the work load all of a sudden exceeds the capacity of your existing software + hardware combination, you can scale up the system (software + hardware) to meet the increased work load.

可扩展架构是能满足负载日益增长的架构。或者说,如果负载超过当前系统的性能,我们可以扩展系统满足突增的负载。

Scalability Factor

When you scale up your system's hardware capacity, you want the workload it is able to handle to scale up to the same degree. If you double hardware capacity of your system, you would like your system to be able to handle double the workload too. This situation is called "linear scalability".

Linear scalability is often not the case though. Very often there is an overhead associated with scaling up, which means that when you double hardware capacity, your system can handle less than double the workload.

The extra workload your system can handle when you scale up your hardware capacity is your system's scalability factor. The scalability factor may vary depending on what part of your system you scale up.

Vertical and Horizontal Scalability

There are two primary ways to scale up a system: Vertical scaling and horizontal scaling.

Vertical scaling means that you scale up the system by deploying the software on a computer with higher capacity than the computer it is currently deployed on. The new computer may have a faster CPU, more memory, faster and larger hard disk, faster memory bus etc. than the current computer.


Horizontal scaling means that you scale up the system by adding more computers with your software deployed on. The added computers typically have about the same capacity as the current computers the system is running on, or whatever capacity you would get for the same money at the time of purchase (computers tend to get more powerful for the same money over time).


Architecture Scalability Requirements

The easiest way to scale up your software from a developer perspective is vertical scalability. You just deploy on a bigger machine, and the software performs better. However, once you get past standard hardware requirements, buying faster CPUs, bigger and faster RAM modules, bigger and faster hard disks, faster and bigger motherboards etc. gets really, really expensive compared to the extra performance you get. Also, if you add more CPUs to a computer, and your software is not explicitly implemented to take advantage of them, you will not get any increased performance out of the extra CPUs.

Scaling horizontally is not as easy seen from a software developer's perspective. In order to make your software take advantage of multiple computers (or even multiple CPUs within the same computer), your software need to be able to parallelize its tasks. In fact, the better your software is at parallelizing its tasks, the better your software scales horizontally.

Task Parallelization

Parallelization of tasks can be done at several levels:

  • Distributing separate tasks onto separate computers.                               【负载均衡】
  • Distributing separate tasks onto separate CPUs on the same computer.【多进程】
  • Distributing separate tasks onto separate threads on the same CPU.     【多线程】

You may also take advantage of special hardware the computers might have, like graphics cards with lots of CPU cores, or InfiniBand network interface cards etc.


Distributing separate tasks to separate computers is often referred to as "load balancing". Load balancing will be covered in more detail in a separate text.

Executing multiple different applications on the same computer, possible using the same CPU or using different CPUs is referred to as "multitasking". Multitasking is typically done by the operating system, so this is not something software developers need to think too much about. What you need to think about is how to break your application into smaller, independent but collaborating processes, which can also be distributed onto different CPUs or even computers if needed.

Distributing tasks inside the same application to different threads is referred to as "multithreading". I have a separate tutorial on Java Multithreading so I will not get deeper into multithreading here.

To be fully parallelizable, a task must be independent of other tasks executing in parallel with it.

Parallelizable tasks must be independent of other tasks executing in parallel.

To be fully distributable onto any computer, the task must contain, or be able to access, any data needed to execute the task, regardless of what computer executes the task. Exactly what that means depends on the kind of application you are developing, so I cannot get into deeper detail here.


来源于:

http://tutorials.jenkov.com/software-architecture/scalable-architectures.html

内容概要:本文档详细介绍了基于MATLAB实现多目标差分进化(MODE)算法进行无人机三维路径规划的项目实例。项目旨在提升无人机在复杂三维环境中路径规划的精度、实时性、多目标协调处理能力、障碍物避让能力和路径平滑性。通过引入多目标差分进化算法,项目解决了传统路径规划算法在动态环境和多目标优化中的不足,实现了路径长度、飞行安全距离、能耗等多个目标的协调优化。文档涵盖了环境建模、路径编码、多目标优化策略、障碍物检测与避让、路径平滑处理等关键技术模块,并提供了部分MATLAB代码示例。 适合人群:具备一定编程基础,对无人机路径规划和多目标优化算法感兴趣的科研人员、工程师和研究生。 使用场景及目标:①适用于无人机在军事侦察、环境监测、灾害救援、物流运输、城市管理等领域的三维路径规划;②通过多目标差分进化算法,优化路径长度、飞行安全距离、能耗等多目标,提升无人机任务执行效率和安全性;③解决动态环境变化、实时路径调整和复杂障碍物避让等问题。 其他说明:项目采用模块化设计,便于集成不同的优化目标和动态环境因素,支持后续算法升级与功能扩展。通过系统实现和仿真实验验证,项目不仅提升了理论研究的实用价值,还为无人机智能自主飞行提供了技术基础。文档提供了详细的代码示例,有助于读者深入理解和实践该项目。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值