1.原子操作的原理是通过锁内存总线的方式实现原子操作的
原子操作
假定运行在两个CPU上的两个内核控制路径试图执行非原子操作同时“读-修改-写”同一存储器单元。首先,两个CPU都试图读同一单元,但是存储器仲裁器插手,只允许其中的一个访问而让另一个延迟。然而,当第一个读操作已经完成后,延迟的CPU从那个存储器单元正好读到同一个(旧)值。然后,两个CPU都试图向那个存储器单元写一新值,总线存储器访问再一次被存储器仲裁器串行化,最终,两个写操作都成功。但是,全局的结果是不对的,因为两个CPU写入同一(新)值。因此,两个交错的"读-修改-写"操作成了一个单独的操作。
避免由于“读-修改-写”指令引起竞争条件的最容易的办法,就是确保这样的操作在芯片级是原子的。任何一个这样的操作都必须一个单个指令执行,中间不能中断,且避免其他CPU访问同一存储单元。
在你编写C代码程序时,并不能保证编译器会为a++这样的操作使用一个原子指令。原子操作需要硬件的支持,因此是架构相关的,它们都使用汇编语言实现,因为C语言并不能实现这样的操作。因此,Linux内核提供了一个专门的atomic_t类型和一些专门的函数和宏。原子操作主要用于实现资源计数,很多引用计数(refcnt)就是通过原子操作实现的。
原子类型定义如下:
[cpp] view plain copy
1. typedef struct {
2. volatile int counter;
3. } atomic_t;
volatile修饰字段告诉gcc不要对该类型的数据做优化处理,对它的访问都是对内存的访问,而不是对寄存器的访问。
Linux中的原子操作
atomic_read(v) 返回*v
atomic_set(v,i) 把*v置成i
atomic_add(i,v) *v增加i
atomic_sub(i,v) *v减去i
atomic_sub_and_test(i,v) *v减去i,如果结果0,则返回1;否则,返回0
atomic_inc(v) *v加1
atomic_dec(v) *v减1
atomic_dec_and_test(v) *v减去1,如果结果0,则返回1;否则,返回0
atomic_inc_and_test(v) *v加上1,如果结果0,则返回1;否则,返回0
atomic_add_negative(i,v) 把i加到*v,如果结果为负,则返回1;否则,返回0
atomic_add_return(i,v) *v加i,返回*v的新值
atomic_sub_return(i,v) *v减i,返回*v的新值
[cpp] view plain copy
1. #ifdef CONFIG_SMP
2. #define LOCK "lock ; "
3. #else
4. #define LOCK ""
5. #endif
6. /**
7. * atomic_add - add integer to atomic variable
8. * @i: integer value to add
9. * @v: pointer of type atomic_t
10. *
11. * Atomically adds @i to @v.
12. */
13. static __inline__ void atomic_add(int i, atomic_t *v)
14. {
15. __asm__ __volatile__(
16. LOCK "addl %1,%0"
17. :"=m" (v->counter)
18. :"ir" (i), "m" (v->counter));
19. }
在多核处理器系统中,每条指令都有一个lock字节的前缀。当控制单元检测到这个前缀时,就“锁定”内存总线,直到这条指令执行完为止。因此,当加锁的指令执行时,其他处理器不能访问这个内存单元。
Linux中的原子位处理函数
test_bit(nr,addr) 返回*addr的第nr位的值
set_bit(nr,addr) 设置*addr的第nr位的值
clear_bit(nr,addr) 清*addr的第nr位
change_bit(nr,addr) 转换*addr的第nr位
test_and_set_bit(nr,addr) 设置*addr的第nr位,并返回它的原值
test_and_clear_bit(nr,addr) 清*addr的第nr位,并返回它的原值
test_and_change_bit(nr,addr) 转换*addr的第nr位,并返回它的原值
atomic_clear_mask(mask,addr) 清除mask指定的*addr的所有位
atomic_set_mask(mask,addr) 设置mask指定的*addr的所有位
需要使用atomic_add_return函数,发现编译时找不到该函数的入口,阅读iatomic.h后发现在I386和X86_64平台下,不支持带有return后缀函数,例如atomic_sub_return,atomic_inc_return等,但支持test后缀函数,如atomic_sub_and_test等。
在其它平台,如powerpc、mips、arm下支持全系列的原子操作。真不知设计这个头文件的人是怎么想的。
/usr/include/alsa/iatomic.h,也能实现原子操作,使用的时候#include<alsa/iatomic.h>就可以了,原有的atomic系列函数这里都有,包括atomic_read、atomic_set、atomic_inc、atomic_add、atomic_sub,但是该函数在RedHat(RHEL)6.0以上版本也被取消了。
只支持32位数据的原子操作。
-------------------------------正文---------------------------------------
在Linux2.6.18之后,删除了<asm/atomic.h>和<asm/bitops.h>,GCC提供了内置的原子操作函数,更适合用户态的程序使用。现在atomic.h在内核头文件中,不在gcc默认搜索路径下,即使像下面这样强行指定路径,还是会出现编译错误。
[cpp] view plain copy print?
#include</usr/src/linux-headers-2.6.27-7/include/asm-x86/atomic.h>
gcc从4.1.0提供了__sync_*系列的built-in函数,用于提供加减和逻辑运算的原子操作,我是传送门。
可以对1,2,4或8字节长度的数值类型或指针进行原子操作,其声明如下
[cpp] view plain copy print?
type __sync_fetch_and_add (type *ptr, type value, ...)
type __sync_fetch_and_sub (type *ptr, type value, ...)
type __sync_fetch_and_or (type *ptr, type value, ...)
type __sync_fetch_and_and (type *ptr, type value, ...)
type __sync_fetch_and_xor (type *ptr, type value, ...)
type __sync_fetch_and_nand (type *ptr, type value, ...)
{ tmp = *ptr; *ptr op= value; return tmp; }
{ tmp = *ptr; *ptr = ~tmp & value; return tmp; } // nand
type __sync_add_and_fetch (type *ptr, type value, ...)
type __sync_sub_and_fetch (type *ptr, type value, ...)
type __sync_or_and_fetch (type *ptr, type value, ...)
type __sync_and_and_fetch (type *ptr, type value, ...)
type __sync_xor_and_fetch (type *ptr, type value, ...)
type __sync_nand_and_fetch (type *ptr, type value, ...)
{ *ptr op= value; return *ptr; }
{ *ptr = ~*ptr & value; return *ptr; } // nand
这两组函数的区别在于第一组返回更新前的值,第二组返回更新后的值,下面的示例引自这里。
[cpp] view plain copy print?
#include <stdio.h>
#include <pthread.h>
#include <stdlib.h>
static int count = 0;
void *test_func(void *arg)
{
int i=0;
for(i=0;i<20000;++i){
__sync_fetch_and_add(&count,1);
}
return NULL;
}
int main(int argc, const char *argv[])
{
pthread_t id[20];
int i = 0;
for(i=0;i<20;++i){
pthread_create(&id[i],NULL,test_func,NULL);
}
for(i=0;i<20;++i){
pthread_join(id[i],NULL);
}
printf("%d/n",count);
return 0;
}
对于使用atomic.h的老代码,可以通过宏定义的方式,移植到高内核版本的linux系统上,例如
[cpp] view plain copy print?
#define atomic_inc(x) __sync_add_and_fetch((x),1)
#define atomic_dec(x) __sync_sub_and_fetch((x),1)
#define atomic_add(x,y) __sync_add_and_fetch((x),(y))
#define atomic_sub(x,y) __sync_sub_and_fetch((x),(y))
当然我们知道,count++这种操作不是原子的。一个自加操作,本质是分成三步的:
1 从缓存取到寄存器
2 在寄存器加1
3 存入缓存。
由于时序的因素,多个线程操作同一个全局变量,会出现问题。这也是并发编程的难点。在目前多核条件下,这种困境会越来越彰显出来。
最简单的处理办法就是加锁保护,这也是我最初的解决方案。看下面的代码:
pthread_mutex_t count_lock = PTHREAD_MUTEX_INITIALIZER;
pthread_mutex_lock(&count_lock);
global_int++;
pthread_mutex_unlock(&count_lock);
后来在网上查找资料,找到了__sync_fetch_and_add系列的命令,发现这个系列命令讲的最好的一篇文章,英文好的同学可以直接去看原文。 Multithreaded simple data type access and atomic variables
__sync_fetch_and_add系列一共有十二个函数,有加/减/与/或/异或/等函数的原子性操作函 数,__sync_fetch_and_add,顾名思义,现fetch,然后自加,返回的是自加以前的值。以count = 4为例,调用__sync_fetch_and_add(&count,1),之后,返回值是4,然后,count变成了5.
有__sync_fetch_and_add,自然也就有__sync_add_and_fetch,呵呵这个的意思就很清楚了,先自加,在返回。他们哥俩的关系与i++和++i的关系是一样的。被谭浩强他老人家收过保护费的都会清楚了。
有了这个宝贝函数,我们就有新的解决办法了。对于多线程对全局变量进行自加,我们就再也不用理线程锁了。下面这行代码,和上面被pthread_mutex保护的那行代码作用是一样的,而且也是线程安全的。
__sync_fetch_and_add( &global_int, 1 );
下面是这群函数的全家福,大家看名字就知道是这些函数是干啥的了。
在用gcc编译的时候要加上选项 -march=i686
type __sync_fetch_and_add (type *ptr, type value);
type __sync_fetch_and_sub (type *ptr, type value);
type __sync_fetch_and_or (type *ptr, type value);
type __sync_fetch_and_and (type *ptr, type value);
type __sync_fetch_and_xor (type *ptr, type value);
type __sync_fetch_and_nand (type *ptr, type value);
type __sync_add_and_fetch (type *ptr, type value);
type __sync_sub_and_fetch (type *ptr, type value);
type __sync_or_and_fetch (type *ptr, type value);
type __sync_and_and_fetch (type *ptr, type value);
type __sync_xor_and_fetch (type *ptr, type value);
type __sync_nand_and_fetch (type *ptr, type value);
// sam:很纳闷为什么后边要写省略号,是不是还有不需要我们关心的参数?用的时候不需要传参数?下面这两个函数正是哥想要的啦,可以轻松实现互斥锁的功能。
bool __sync_bool_compare_and_swap (type*ptr, type oldval, type newval, ...)
type __sync_val_compare_and_swap (type *ptr, type oldval, type newval, ...)
这两个函数提供原子的比较和交换,如果*ptr == oldval,就将newval写入*ptr,
第一个函数在相等并写入的情况下返回true.
第二个函数在返回操作之前的值。
__sync_synchronize (...)
理解上面这个东西,参照:http://blog.sunchangming.com/post/47188394133
还有两个函数:
type __sync_lock_test_and_set (type *ptr, type value, ...)
将*ptr设为value并返回*ptr操作之前的值。
void __sync_lock_release (type *ptr, ...)
将*ptr置0
需要提及的是,这个type不能够瞎搞。下面看下__sync_fetch_and_add反汇编出来的指令,
804889d: f0 83 05 50 a0 04 08 lock addl $0x1,0x804a050
我们看到了,addl前面有个lock,这行汇编指令码前面是f0开头,f0叫做指令前缀,Richard Blum
老爷子将指令前缀分成了四类,有兴趣的同学可以看下。其实我也没看懂,intel的指令集太厚了,没空看。总之老爷子解释了,lock前缀的意思是对内存区域的排他性访问。
? Lock and repeat prefixes
? Segment override and branch hint prefixes
? Operand size override prefix
? Address size override prefix
前文提到,lock是锁FSB,前端串行总线,front serial bus,这个FSB是处理器和RAM之间的总线,锁住了它,就能阻止其他处理器或者core从RAM获取数据。当然这种操作是比较费的,只能操作小的内存 可以这样做,想想我们有memcpy ,如果操作一大片内存,锁内存,那么代价就太昂贵了。所以前文提到的_sync_fetch_add_add家族,type只能是int long ,long long(及对应unsigned类型)。
下面提供了函数,是改造的Alexander Sundler的原文,荣誉属于他,我只是学习他的代码,稍微改动了一点点。比较了两种方式的耗时情况。呵呵咱是菜鸟,不敢枉自剽窃大师作品。向大师致敬。
#define _GNU_SOURCE
#include <stdio.h>
#include <pthread.h>
#include <unistd.h>
#include <stdlib.h>
#include <sched.h>
#include <linux/unistd.h>
#include <sys/syscall.h>
#include <errno.h>
#include<linux/types.h>
#include<time.h>
#define INC_TO 1000000 // one million...
__u64 rdtsc()
{
__u32 lo,hi;
__asm__ __volatile__
(
"rdtsc":"=a"(lo),"=d"(hi)
);
return (__u64)hi<<32|lo;
}
int global_int = 0;
pthread_mutex_t count_lock = PTHREAD_MUTEX_INITIALIZER;
pid_t gettid( void )
{
return syscall( __NR_gettid );
}
void *thread_routine( void *arg )
{
int i;
int proc_num = (int)(long)arg;
__u64 begin, end;
struct timeval tv_begin,tv_end;
__u64 timeinterval;
cpu_set_t set;
CPU_ZERO( &set );
CPU_SET( proc_num, &set );
if (sched_setaffinity( gettid(), sizeof( cpu_set_t ), &set ))
{
perror( "sched_setaffinity" );
return NULL;
}
begin = rdtsc();
gettimeofday(&tv_begin,NULL);
for (i = 0; i < INC_TO; i++)
{
// global_int++;
__sync_fetch_and_add( &global_int, 1 );
}
gettimeofday(&tv_end,NULL);
end = rdtsc();
timeinterval =(tv_end.tv_sec - tv_begin.tv_sec)*1000000 +(tv_end.tv_usec - tv_begin.tv_usec);
fprintf(stderr,"proc_num :%d,__sync_fetch_and_add cost %llu CPU cycle,cost %llu us\n", proc_num,end-begin,timeinterval);
return NULL;
}
void *thread_routine2( void *arg )
{
int i;
int proc_num = (int)(long)arg;
__u64 begin, end;
struct timeval tv_begin,tv_end;
__u64 timeinterval;
cpu_set_t set;
CPU_ZERO( &set );
CPU_SET( proc_num, &set );
if (sched_setaffinity( gettid(), sizeof( cpu_set_t ), &set ))
{
perror( "sched_setaffinity" );
return NULL;
}
begin = rdtsc();
gettimeofday(&tv_begin,NULL);
for(i = 0;i<INC_TO;i++)
{
pthread_mutex_lock(&count_lock);
global_int++;
pthread_mutex_unlock(&count_lock);
}
gettimeofday(&tv_end,NULL);
end = rdtsc();
timeinterval =(tv_end.tv_sec - tv_begin.tv_sec)*1000000 +(tv_end.tv_usec - tv_begin.tv_usec);
fprintf(stderr,"proc_num :%d,pthread lock cost %llu CPU cycle,cost %llu us\n",proc_num,end-begin ,timeinterval);
return NULL;
}
int main()
{
int procs = 0;
int i;
pthread_t *thrs;
// Getting number of CPUs
procs = (int)sysconf( _SC_NPROCESSORS_ONLN );
if (procs < 0)
{
perror( "sysconf" );
return -1;
}
thrs = malloc( sizeof( pthread_t ) * procs );
if (thrs == NULL)
{
perror( "malloc" );
return -1;
}
printf( "Starting %d threads...\n", procs );
for (i = 0; i < procs; i++)
{
if (pthread_create( &thrs[i], NULL, thread_routine,
(void *)(long)i ))
{
perror( "pthread_create" );
procs = i;
break;
}
}
for (i = 0; i < procs; i++)
pthread_join( thrs[i], NULL );
free( thrs );
printf( "After doing all the math, global_int value is: %d\n", global_int );
printf( "Expected value is: %d\n", INC_TO * procs );
return 0;
}
通过我的测试发现:
Starting 4 threads...
proc_num :2,no locker cost 27049544 CPU cycle,cost 12712 us
proc_num :0,no locker cost 27506750 CPU cycle,cost 12120 us
proc_num :1,no locker cost 28499000 CPU cycle,cost 13365 us
proc_num :3,no locker cost 27193093 CPU cycle,cost 12780 us
After doing all the math, global_int value is: 1169911
Expected value is: 4000000
Starting 4 threads...
proc_num :2,__sync_fetch_and_add cost 156602056 CPU cycle,cost 73603 us
proc_num :1,__sync_fetch_and_add cost 158414764 CPU cycle,cost 74456 us
proc_num :3,__sync_fetch_and_add cost 159065888 CPU cycle,cost 74763 us
proc_num :0,__sync_fetch_and_add cost 162621399 CPU cycle,cost 76426 us
After doing all the math, global_int value is: 4000000
Expected value is: 4000000
Starting 4 threads...
proc_num :1,pthread lock cost 992586450 CPU cycle,cost 466518 us
proc_num :3,pthread lock cost 1008482114 CPU cycle,cost 473998 us
proc_num :0,pthread lock cost 1018798886 CPU cycle,cost 478840 us
proc_num :2,pthread lock cost 1019083986 CPU cycle,cost 478980 us
After doing all the math, global_int value is: 4000000
Expected value is: 4000000
1 不加锁的情况下,不能返回正确的结果
测试程序结果显示,正确结果为400万,实际为1169911.
2 线程锁和原子性自加都能返回正确的结果。
3 性能上__sync_fetch_and_add,完爆线程锁。
从测试结果上看, __sync_fetch_and_add,速度是线程锁的6~7倍