Number Sequence
Time Limit : 10000/5000ms (Java/Other) Memory Limit : 32768/32768K (Java/Other)
Total Submission(s) : 20 Accepted Submission(s) : 14
Problem Description
Given two sequences of numbers : a[1], a[2], ...... , a[N], and b[1], b[2], ...... , b[M] (1 <= M <= 10000, 1 <= N <= 1000000). Your task is to find a number K which make a[K] = b[1], a[K + 1] = b[2], ...... , a[K + M - 1] = b[M].
If there are more than one K exist, output the smallest one.
Input
The first line of input is a number T which indicate the number of cases. Each case contains three lines. The first line is two numbers N and M (1 <= M <= 10000, 1 <= N <= 1000000). The second line contains N integers which indicate
a[1], a[2], ...... , a[N]. The third line contains M integers which indicate b[1], b[2], ...... , b[M]. All integers are in the range of [-1000000, 1000000].
Output
For each test case, you should output one line which only contain K described above. If no such K exists, output -1 instead.
Sample Input
2 13 5 1 2 1 2 3 1 2 3 1 3 2 1 2 1 2 3 1 3 13 5 1 2 1 2 3 1 2 3 1 3 2 1 2 1 2 3 2 1
Sample Output
6 -1/* 题目大意:给你两组数据,判断第二组是否存在于第一组,如果存在从第几位数开始, 不存在则输出-1。 思路:直接用KMP算法,找到第一个匹配的地方,然后将i-m+1及时第一次匹配的位置 */ #include<iostream> #include<cstdio> using namespace std ; #define MAX 1000005 int next[MAX],m,n; int a[MAX] , b[MAX]; void pre_next(int k ) { int i = 0 , j = -1 ; next[0] = - 1 ; while( i < k ) { if( j == -1 || a[i] == a[j]) { i++ ; j++ ; next[i] = j ; } else j = next[j] ; } } int KMP() { int i = 0 , j = 0 ,count = 0 ; while( i <= n ) { if(j== - 1 || a[j]==b[i]){ i++; j++ ; } else j = next[j] ; if(j == m ){ return i-m+1; } } return -1 ; } int main(void) { int t ; scanf("%d",&t); while(t--) { int i ; scanf("%d %d",&n,&m); for( i = 0 ; i < n ; i ++) scanf("%d",&b[i]); for( i = 0 ; i < m ; i ++) scanf("%d",&a[i]); pre_next(m); if(n<m) printf("-1\n"); else printf("%d\n",KMP()); } return 0 ; }