Eight
Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 8536 Accepted Submission(s): 2321
Special Judge
Problem Description
The 15-puzzle has been around for over 100 years; even if you don't know it by that name, you've seen it. It is constructed with 15 sliding tiles, each with a number from 1 to 15 on it, and all packed into a 4 by 4 frame with one tile missing. Let's call the missing tile 'x'; the object of the puzzle is to arrange the tiles so that they are ordered as:
where the only legal operation is to exchange 'x' with one of the tiles with which it shares an edge. As an example, the following sequence of moves solves a slightly scrambled puzzle:
The letters in the previous row indicate which neighbor of the 'x' tile is swapped with the 'x' tile at each step; legal values are 'r','l','u' and 'd', for right, left, up, and down, respectively.
Not all puzzles can be solved; in 1870, a man named Sam Loyd was famous for distributing an unsolvable version of the puzzle, and
frustrating many people. In fact, all you have to do to make a regular puzzle into an unsolvable one is to swap two tiles (not counting the missing 'x' tile, of course).
In this problem, you will write a program for solving the less well-known 8-puzzle, composed of tiles on a three by three
arrangement.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 x
where the only legal operation is to exchange 'x' with one of the tiles with which it shares an edge. As an example, the following sequence of moves solves a slightly scrambled puzzle:
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 5 6 7 8 5 6 7 8 5 6 7 8 5 6 7 8 9 x 10 12 9 10 x 12 9 10 11 12 9 10 11 12 13 14 11 15 13 14 11 15 13 14 x 15 13 14 15 x r-> d-> r->
The letters in the previous row indicate which neighbor of the 'x' tile is swapped with the 'x' tile at each step; legal values are 'r','l','u' and 'd', for right, left, up, and down, respectively.
Not all puzzles can be solved; in 1870, a man named Sam Loyd was famous for distributing an unsolvable version of the puzzle, and
frustrating many people. In fact, all you have to do to make a regular puzzle into an unsolvable one is to swap two tiles (not counting the missing 'x' tile, of course).
In this problem, you will write a program for solving the less well-known 8-puzzle, composed of tiles on a three by three
arrangement.
Input
You will receive, several descriptions of configuration of the 8 puzzle. One description is just a list of the tiles in their initial positions, with the rows listed from top to bottom, and the tiles listed from left to right within a row, where the tiles are represented by numbers 1 to 8, plus 'x'. For example, this puzzle
1 2 3
x 4 6
7 5 8
is described by this list:
1 2 3 x 4 6 7 5 8
1 2 3
x 4 6
7 5 8
is described by this list:
1 2 3 x 4 6 7 5 8
Output
You will print to standard output either the word ``unsolvable'', if the puzzle has no solution, or a string consisting entirely of the letters 'r', 'l', 'u' and 'd' that describes a series of moves that produce a solution. The string should include no spaces and start at the beginning of the line. Do not print a blank line between cases.
Sample Input
2 3 4 1 5 x 7 6 8
Sample Output
ullddrurdllurdruldr
Source
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#define MAX 362881
struct Node
{
int state[3][3];
int pre,dir;
void printState()
{
for(int i=0;i<3;i++)
{
for(int j=0;j<3;j++)
{
printf("%d ", state[i][j]);
}
printf("/n");
}
printf("/n");
}
}queue[MAX];
int cantor[9]={1,1,2,6,24,120,720,5040,40320};
int rear, front, step[MAX], len;
bool visited[MAX];
int hash(int a[3][3])
{
int b[9],k=0,result=0;
for(int i=0;i<3;i++)
{
for(int j=0;j<3;j++)
{
b[k++]=a[i][j];
}
}
for(int i=0;i<9;i++)
{
int num=0;
for(int j=0;j<i;j++)
{
if(b[j]>b[i])
{
num++;
}
}
result+=cantor[i]*num;
}
return result;
}
void input()
{
char s[10];
for(int i=0;i<3;i++)
{
for(int j=0;j<3;j++)
{
scanf("%s",s);
if(s[0]=='x') s[0]='9';
queue[0].state[i][j]=s[0]-'0';
}
}
}
void makeResult()
{
len=0;
while(queue[front].pre!=-1)
{
step[len++]=queue[front].dir;
front=queue[front].pre;
}
}
void output()
{
for(int i=len-1;i>=0;i--)
{
switch(step[i])
{
case 0: printf("l"); break;
case 1: printf("u"); break;
case 2: printf("r"); break;
case 3: printf("d"); break;
}
}
printf("/n");
}
bool complete()
{
for(int i=0;i<3;i++)
{
for(int j=0;j<3;j++)
{
if(i*3+j+1!=queue[front].state[i][j])
{
return false;
}
}
}
return true;
}
bool bfs()
{
queue[0].pre=-1;
queue[0].dir=-1;
rear=0,front=1;
visited[hash(queue[0].state)]=true;
if(complete()) return true;
while(rear<front)
{
int nx,ny;
for(int i=0;i<3;i++)
{
for(int j=0;j<3;j++)
{
if(queue[rear].state[i][j]==9)
{
nx=i,ny=j;
}
}
}
if(ny>0)
{
for(int i=0;i<3;i++)
{
for(int j=0;j<3;j++)
{
queue[front].state[i][j]=queue[rear].state[i][j];
}
}
queue[front].state[nx][ny]^=queue[front].state[nx][ny-1];
queue[front].state[nx][ny-1]^=queue[front].state[nx][ny];
queue[front].state[nx][ny]^=queue[front].state[nx][ny-1];
int temp=hash(queue[front].state);
if(!visited[temp])
{
visited[temp]=true;
queue[front].pre=rear;
queue[front].dir=0;
if(complete())
{
return true;
}
front++;
}
}
if(nx>0)
{
for(int i=0;i<3;i++)
{
for(int j=0;j<3;j++)
{
queue[front].state[i][j]=queue[rear].state[i][j];
}
}
queue[front].state[nx][ny]^=queue[front].state[nx-1][ny];
queue[front].state[nx-1][ny]^=queue[front].state[nx][ny];
queue[front].state[nx][ny]^=queue[front].state[nx-1][ny];
int temp=hash(queue[front].state);
if(!visited[temp])
{
visited[temp]=true;
queue[front].pre=rear;
queue[front].dir=1;
if(complete())
{
return true;
}
front++;
}
}
if(ny<2)
{
for(int i=0;i<3;i++)
{
for(int j=0;j<3;j++)
{
queue[front].state[i][j]=queue[rear].state[i][j];
}
}
queue[front].state[nx][ny]^=queue[front].state[nx][ny+1];
queue[front].state[nx][ny+1]^=queue[front].state[nx][ny];
queue[front].state[nx][ny]^=queue[front].state[nx][ny+1];
int temp=hash(queue[front].state);
if(!visited[temp])
{
visited[temp]=true;
queue[front].pre=rear;
queue[front].dir=2;
if(complete())
{
return true;
}
front++;
}
}
if(nx<2)
{
for(int i=0;i<3;i++)
{
for(int j=0;j<3;j++)
{
queue[front].state[i][j]=queue[rear].state[i][j];
}
}
queue[front].state[nx][ny]^=queue[front].state[nx+1][ny];
queue[front].state[nx+1][ny]^=queue[front].state[nx][ny];
queue[front].state[nx][ny]^=queue[front].state[nx+1][ny];
int temp=hash(queue[front].state);
if(!visited[temp])
{
visited[temp]=true;
queue[front].pre=rear;
queue[front].dir=3;
if(complete())
{
return true;
}
front++;
}
}
rear++;
}
return false;
}
int main()
{
input();
if(bfs())
{
makeResult();
output();
}
else
{
printf("unsolvable/n");
}
return 0;
}