java 集合框架-AbstractList

本文详细介绍了Java集合框架中的AbstractList类,包括它如何实现List接口的主要方法如indexOf、lastIndexOf和subList,以及迭代器的实现。重点讨论了并发修改检查的modCount属性,并解析了ListIterator的特性和功能,如指定位置开始迭代、双向迭代、修改当前元素和添加元素的能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

AbstractList 作为具体List型具体类,实现AbstractCollection抽象类、继承List接口,实现了部分方法
- indexOf
- lastIndexOf
- subList
- addAll
- iterator
- listIterator
- equals
- hashCode

下面源码分析一些较复杂的方法实现

一、实现List的接口方法

indexOf、lastIndexOf、subList

    public int indexOf(Object o) {
        ListIterator<E> it = listIterator();
        if (o==null) {
            while (it.hasNext())
                if (it.next()==null)
                    return it.previousIndex();
        } else {
            while (it.hasNext())
                if (o.equals(it.next()))
                    return it.previousIndex();
        }
        return -1;
    }

indexOf 方法使用List特有的ListIterator实现,在遍历判断中,使用List双向的特性,返回index,不需要每次记录index;
有关listIterator的详情,后面分析

    public int lastIndexOf(Object o) {
        ListIterator<E> it = listIterator(size());
        if (o==null) {
            while (it.hasPrevious())
                if (it.previous()==null)
                    return it.nextIndex();
        } else {
            while (it.hasPrevious())
                if (o.equals(it.previous()))
                    return it.nextIndex();
        }
        return -1;
    }

lastIndexOf 就将ListIterator 双向遍历的特性用的更加完成,直接反向遍历查询;

二、迭代器实现

    public Iterator<E> iterator() {
        return new Itr();
    }

    public ListIterator<E> listIterator() {
        return listIterator(0);
    }

    public ListIterator<E> listIterator(final int index) {
        rangeCheckForAdd(index);

        return new ListItr(index);
    }

前面两篇的描述中,都强调迭代器的重要性,在AbstractList就可以看到它的实现了:

    private class Itr implements Iterator<E> {
        /**
         * Index of element to be returned by subsequent call to next.
         */
        int cursor = 0; //游标,表示当前迭代处于的位置;初始为0,总是从第一个元素开始

        /**
         * Index of element returned by most recent call to next or
         * previous.  Reset to -1 if this element is deleted by a call
         * to remove.
         */
        int lastRet = -1; //表示当前迭代处于位置的前一个下标,remove移除元素就是这个下标对应的元素,移除后恢复为-1,表示remove只能在每次next方法后调用一次

        /**
         * The modCount value that the iterator believes that the backing
         * List should have.  If this expectation is violated, the iterator
         * has detected concurrent modification.
         */
        int expectedModCount = modCount;//这个整型数用来保证迭代时,集合没有发生并发的修改

        public boolean hasNext() {
            return cursor != size();
        }

        public E next() {
            checkForComodification();
            try {
                int i = cursor;
                E next = get(i);
                lastRet = i; //记录位置
                cursor = i + 1; //每次next,游标后移一位
                return next;
            } catch (IndexOutOfBoundsException e) {
                checkForComodification();
                throw new NoSuchElementException();
            }
        }

        public void remove() {
            if (lastRet < 0) //不可在next方法前、或一次next方法后两次调用
                throw new IllegalStateException();
            checkForComodification();

            try {
                AbstractList.this.remove(lastRet);
                if (lastRet < cursor)
                    cursor--;
                lastRet = -1;
                expectedModCount = modCount;
            } catch (IndexOutOfBoundsException e) {
                throw new ConcurrentModificationException();
            }
        }

        final void checkForComodification() { //该方法检测是否发生了并发修改
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
        }
    }

迭代器的实现并不复杂,唯有并发修改的快速失败(ConcurrentModificationException),只从上面的源码还看不出来,需要知道modCount值的变化,从迭代器的remove方法可以猜测到,在对集合修改时,这个值是会发送变化,当处于迭代时,其他线程修改集合导致这个值改变,那么可以检测到并发修改;

我们来看下这个属性在AbstractList中的定义:

    /**
     * The number of times this list has been <i>structurally modified</i>.
     * Structural modifications are those that change the size of the
     * list, or otherwise perturb it in such a fashion that iterations in
     * progress may yield incorrect results.
     *
     * <p>This field is used by the iterator and list iterator implementation
     * returned by the {@code iterator} and {@code listIterator} methods.
     * If the value of this field changes unexpectedly, the iterator (or list
     * iterator) will throw a {@code ConcurrentModificationException} in
     * response to the {@code next}, {@code remove}, {@code previous},
     * {@code set} or {@code add} operations.  This provides
     * <i>fail-fast</i> behavior, rather than non-deterministic behavior in
     * the face of concurrent modification during iteration.
     *
     * <p><b>Use of this field by subclasses is optional.</b> If a subclass
     * wishes to provide fail-fast iterators (and list iterators), then it
     * merely has to increment this field in its {@code add(int, E)} and
     * {@code remove(int)} methods (and any other methods that it overrides
     * that result in structural modifications to the list).  A single call to
     * {@code add(int, E)} or {@code remove(int)} must add no more than
     * one to this field, or the iterators (and list iterators) will throw
     * bogus {@code ConcurrentModificationExceptions}.  If an implementation
     * does not wish to provide fail-fast iterators, this field may be
     * ignored.
     */
    protected transient int modCount = 0;

注释大概说明三个点,和我们猜测的一致:
- 记录在结构上修改集合的次数
- 这个字段被用于迭代器,用于提供并发修改的快速失败机制
- 子类可以选择是否使用这个机制,实现只需要在修改结构的方法递增这个值即可;不实现直接忽略该值

接下来再看下ListIterator:

    private class ListItr extends Itr implements ListIterator<E> {
        ListItr(int index) {  
            cursor = index;
        }

        public boolean hasPrevious() {
            return cursor != 0;
        }

        public E previous() {
            checkForComodification();
            try {
                int i = cursor - 1;
                E previous = get(i);
                lastRet = cursor = i;
                return previous;
            } catch (IndexOutOfBoundsException e) {
                checkForComodification();
                throw new NoSuchElementException();
            }
        }

        public int nextIndex() {
            return cursor;
        }

        public int previousIndex() {
            return cursor-1;
        }

        public void set(E e) {
            if (lastRet < 0)
                throw new IllegalStateException();
            checkForComodification();

            try {
                AbstractList.this.set(lastRet, e);
                expectedModCount = modCount;
            } catch (IndexOutOfBoundsException ex) {
                throw new ConcurrentModificationException();
            }
        }

        public void add(E e) {
            checkForComodification();

            try {
                int i = cursor;
                AbstractList.this.add(i, e);
                lastRet = -1;
                cursor = i + 1;
                expectedModCount = modCount;
            } catch (IndexOutOfBoundsException ex) {
                throw new ConcurrentModificationException();
            }
        }
    }

可以看出,实现和Itr很相似,增加几个特性:
- 允许指定下标开始迭代
- 支持双向迭代
- 允许修改当前下标元素
- 允许在当前下标添加元素

Object 声明的三个常需实现方法:toString、equals、hashCode;AbstractCollection已经实现了toString,
AbstractList实现了剩下的两个方法:

    public int hashCode() {
        int hashCode = 1;
        for (E e : this)
            hashCode = 31*hashCode + (e==null ? 0 : e.hashCode());
        return hashCode;
    }

    public boolean equals(Object o) {
        if (o == this)
            return true;
        if (!(o instanceof List))
            return false;

        ListIterator<E> e1 = listIterator();
        ListIterator e2 = ((List) o).listIterator();
        while (e1.hasNext() && e2.hasNext()) {
            E o1 = e1.next();
            Object o2 = e2.next();
            if (!(o1==null ? o2==null : o1.equals(o2)))
                return false;
        }
        return !(e1.hasNext() || e2.hasNext());
    }

两个list相等的条件是类型一样、size一样、每个元素对应相等;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值