利用离散序列的差分运算寻找序列的下降沿、上升沿、极大值(波峰)、极小值(波谷)的原理

本文介绍了如何利用一阶和二阶差分运算寻找离散序列中的极值点(波峰、波谷)、下降沿和上升沿。通过分析一阶差分和二阶差分的性质,提出了一套适用于工程实践的判断条件,这些条件类似于连续函数求极值的充分条件。此外,还提供了寻找下降沿和上升沿的具体步骤,并强调了这些条件仅为充分条件,可能存在例外情况。

我们先来看一看对于连续函数,我们通常是怎么求其极值的。
通常我们用函数极值的第一充分条件和第二充分条件来求函数的极值。
函数极值的第一充分条件和第二充分条件的内容如下:
(懒得自己写了,直接把高等数学书上的内容截图发上来吧,大家将就看吧!)
在这里插入图片描述
在这里插入图片描述
在实际工程中,我们用得最多的是第二充分条件。

说完了连续函数求极值点,自然该说离散序列怎么找极值点了,即我们常说的寻找离散序列的波峰、波谷。

为了说明这个问题,首先我们要知道“离散序列差分运算”的概念。
设有序列 . . . , f ( k − 2 ) , f ( k − 1 ) , f ( k ) , f ( k + 1 ) , f ( k + 2 ) , . . . ...,f(k-2),f(k-1),f(k),f(k+1),f(k+2),... ...,f(k2),f(k1),f(k),f(k+1),f(k+2),...
则这个序列第k点的:
一阶前向差分定义为: △ f ( k ) = f ( k + 1 ) − f ( k ) \bigtriangleup f(k)=f(k+1)-f(k) f(k)=f(k+1)f(k)
一阶后向差分定义为: ▽ f ( k ) = f ( k ) − f ( k − 1 ) \bigtriangledown f(k)=f(k)-f(k-1) f(k)=f(k)f(k1)
从上面的定义来看,前向差分和后向差分其实没有本质上的区别,所以它们的性质也相同。
序列f(k)的二阶差分是对其一阶差分的差分,即:
△ 2 f ( k ) = △ [ △ f ( k ) ] = △ [ f ( k + 1 ) − f ( k ) ] = △ f ( k + 1 ) − △ f ( k ) \bigtriangleup ^{2} f(k)=\bigtriangleup [\bigtriangleup f(k)]=\bigtriangleup [f(k+1)-f(k)]=\bigtriangleup f(k+1)-\bigtriangleup f(k) 2f(k)=[f(k)]=[f(k+1)f(k)]=f(k+1)f(k)
      = f ( k + 2 ) − 2 f ( k + 1 ) + f ( k ) =f(k+2)-2f(k+1)+f(k) =f(k+2)2f(k+1)+f(k)

用通俗的话来讲:差分,其实就是下一个数值 ,减去上一个数值 。用下一个数值,减去上一个数值 ,就叫“一阶差分”,对一阶差分的结果再做一次差分,就叫“二阶差分"。

从上面的定义式我们可以看出:
对于序列的前向差分,其最后一个点是没有一阶差分的,其最后两个点是没有二阶差分的。

对于序列的后向差分,其第一个点是没有一阶差分的,其第一个点和第二个点是没有二阶差分的。

那么怎么利用序列的差分运算寻找序列的下降沿、上升沿、极值点(波峰、波谷)呢?
离散序列的差分运算类似于连续函数中的求导运算,所以对比上面连续函数对极值点判定的充分条件,我们可以探索出对离散序列下降沿、上升沿、极值点(波峰、波谷)的找寻方法。具体方法如下:

情况一:寻找下降沿
设离散序列中序号为k的点满足以下条件:
△ f ( k ) = 0 \bigtriangleup f(k)=0 f(k)=0
△ f ( k + 1 ) < 0 \bigtriangleup f(k+1)<0 f(k+1)<0
则序号为k+1的点是一个下降沿。
证明:
因为 △ f ( k ) = 0 \bigtriangleup f(k)=0 f(k)=0,所以有 f ( k + 1 ) − f ( k ) = 0 f(k+1)-f(k)=0 f(k+1)f(k)=0,所以 f ( k + 1 ) = f ( k ) f(k+1)=f(k) f(k+1)=f(k)
又由于 △ f ( k + 1 ) < 0 \bigtriangleup f(k+1)<0 f(k+1)<0
所以 △ f ( k + 1 ) = f ( k + 2 ) − f ( k + 1 ) < 0 \bigtriangleup f(k+1)=f(k+2)-f(k+1)<0 f(k+1)=f(k+2)f(k+1)<0
综上,有 f ( k ) = f ( k + 1 ) > f ( k + 2 ) f(k)=f(k+1)>f(k+2) f(k)=f(k+1)>f(k+2)
所以第k+1个点是一个下降沿的边缘。
此时相关点的位置关系如下图所示:
在这里插入图片描述
情况二:寻找上升沿
设离散序列中序号为k的点满足以下条件:
△ f ( k ) = 0 \bigtriangleup f(k)=0 f(k)=0
△ f ( k + 1 ) > 0 \bigtriangleup f(k+1)>0 f(k+1)>0
则序号为k+1的点是一个上升沿。
证明:
因为 △ f ( k ) = 0 \bigtriangleup f(k)=0 f(k)=0,所以有 f ( k + 1 ) − f ( k ) = 0 f(k+1)-f(k)=0 f(k+1)f(k)=0,所以 f ( k + 1 ) = f ( k ) f(k+1)=f(k) f(k+1)=f(k)
又由于 △ f ( k + 1 ) > 0 \bigtriangleup f(k+1)>0 f(k+1)>0
所以 △ f ( k + 1 ) = f ( k + 2 ) − f ( k + 1 ) > 0 \bigtriangleup f(k+1)=f(k+2)-f(k+1)>0 f(k+1)=f(k+2)f(k+1)>0
综上,有 f ( k ) = f ( k + 1 ) < f ( k + 2 ) f(k)=f(k+1)<f(k+2) f(k)=f(k+1)<f(k+2)
所以第k+1个点是一个上升沿的边缘。
此时相关点的位置关系如下图所示:
在这里插入图片描述

情况三:寻找极大值点
设离散序列中序号为k的点满足以下条件:
△ f ( k − 2 ) > 0 \bigtriangleup f(k-2)>0 f(k2)>0
△ f ( k − 1 ) = 0 \bigtriangleup f(k-1)=0 f(k1)=0
△ f ( k ) = 0 \bigtriangleup f(k)=0 f(k)=0
△ f ( k + 1 ) < 0 \bigtriangleup f(k+1)<0 f(k+1)<0
则序号为k的点是一个极大值点。
证明:略,参考情况一、情况二的证明。
此时相关点的位置关系如下图所示:
在这里插入图片描述
情况四:找寻极小值点
设离散序列中序号为k的点满足以下条件:
△ f ( k − 2 ) < 0 \bigtriangleup f(k-2)<0 f(k2)<0
△ f ( k − 1 ) = 0 \bigtriangleup f(k-1)=0 f(k1)=0
△ f ( k ) = 0 \bigtriangleup f(k)=0 f(k)=0
△ f ( k + 1 ) > 0 \bigtriangleup f(k+1)>0 f(k+1)>0
则序号为k的点是一个极小值点。
证明:略,参考情况一、情况二的证明。
此时相关点的位置关系如下图所示:
在这里插入图片描述
需要说明的两点:
①上面情况三、情况四的条件是充分条件,也就是说不满足上面情况的点也有可能是极大值点,极小值点。比如下面图中的k点,它是一个波峰,但它并不满足上面的判定条件。
在这里插入图片描述
②上面的判断条件中并没有用到前面介绍的二阶差分,那为什么要说二阶差分运算呢?因为刚好说到这个知识点,所以就多说了几句嘛。

下面这个链接是运用序列的差分运算找寻离散序列下降沿的例子:
https://www.hhai.cc/thread-232-1-1.html

### 回答1: 对于字母"c",我们可以从多个角度进行回答。 首先,“c”是英文字母表中的第三个字母。它的发音类似于“西”,是一个辅音字母,而不是元音字母。在英语单词中,它可以以不同的发音出现,如在“cat”中发音为/k/,在“city”中发音为/s/,在“chocolate”中发音为/tʃ/等。此外,英文中还有一些特定的词汇和短语以字母"c"开头,如“car”(车)、“cat”(猫)、“computer”(电脑)等。 另外,对于计算机领域来说,字母“c”也有特殊的含义。它是一种编程语言,被广泛用于软件开发和系统编程。C语言由贝尔实验室的Dennis Ritchie在20世纪70年代早期开发,是一种结构化的、高级的程序设计语言。它具有强大的底层编程能力和广泛的应用领域,例如操作系统、编译器、数据库和网络等。 此外,字母“c”在化学元素周期表中也代表着碳元素(Carbon)。碳是地球上最常见的元素之一,它的原子号是6,原子量为12.01。碳的存在形式多样,可以形成各种化合物,用途广泛,如有机化学中的有机物、燃料燃烧生成的二氧化碳等。 总之,字母“c”在不同情境下具有不同的含义,无论是作为一个英文字母、一种编程语言还是一个化学元素,都承载着特定的意义和重要的用途。 ### 回答2: c是英文字母表的第三个字母,也是编程语言中的一种。在数学中,c通常表示一个常数,表示一个固定的值。在化学中,C是碳的化学符号。在物理中,c代表光速,也就是光在真空中传播的速度。在音乐中,C代表唱名Do。在计量学中,C代表摄氏度的单位。 在计算机科学中,C是一种高级编程语言,也是一种很强大的语言。它是由贝尔实验室于1972年开发的,主要是为了开发UNIX操作系统而设计的。C语言以其简洁、高效和强大的功能而闻名,被广泛用于系统开发、嵌入式系统和应用程序开发。 C语言具有很多特点,包括直接的内存访问、底层控制、高速执行等。它提供了丰富的数据类型,如整型、字符型、浮点型等,并且支持自定义数据类型的定义。C语言还提供了很多控制结构,如循环、条件和分支等,使得程序的逻辑结构清晰明了。 C语言也是学习其他高级编程语言的基础。许多编程语言都是以C语言为基础开发的,如C++、Java、Python等。因此,掌握C语言可以为学习其他编程语言打下坚实的基础。 总之,C语言是一种强大而广泛应用的编程语言,具有许多特点和能力。它是计算机科学中非常重要的一部分,对于学习编程和系统开发非常有帮助。 ### 回答3: 题目提供的信息太过简洁,无法理解您具体想获得什么样的回答。请提供更多详细的背景信息或明确您的问题,以便我能更好地回答您的疑问。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

昊虹AI笔记

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值