字典
redis 是 key-value 的 NoSQL 数据库,dict 是基本数据结构,dict 总体来说是一个哈希表,哈希表
O
(
1
)
O(1)
O(1) 的时间复杂度,能高效进行数据读取。dict 还有动态扩容/缩容的功能,能灵活有效地使用机器内存。因为 redis 是单进程服务,所以当数据量很大的时候,扩容/缩容这些内存操作,涉及到新内存重新分配,数据拷贝。当数据量大的时候,会导致系统卡顿,必然会影响服务质量,redis 作者采用了渐进式的方式,将一次性操作,分散到 dict 对应的各个增删改查操作中。每个操作触发有限制数量的数据进行迁移。所以 dict 会有两个哈希表(dictht ht[2];),相应的 rehashidx 迁移位置,方便数据迁移操作。
更精彩内容,可以关注我的博客:wenfh2020.com
数据结构

//字典
typedef struct dict {
dictType *type;
void *privdata;
dictht ht[2];
long rehashidx;/* rehashing not in progress if rehashidx == -1 */
int iterators; /* number of iterators currently running */
} dict;
// 哈希表
typedef struct dictht {
dictEntry **table;
unsigned long size;
unsigned long sizemask;
unsigned long used;
} dictht;
// 链表数据结点
typedef struct dictEntry {
void *key;
union {
void *val;
uint64_t u64;
int64_t s64;
double d;
} v;
struct dictEntry *next;
} dictEntry;
// 数据类型,不同应用实现是不同的,所以用指针函数抽象出通用的接口,方便调用。
typedef struct dictType {
unsigned int (*hashFunction)(const void *key);
void *(*keyDup)(void *privdata, const void *key);
void *(*valDup)(void *privdata, const void *obj);
int (*keyCompare)(void *privdata, const void *key1, const void *key2);
void (*keyDestructor)(void *privdata, void *key);
void (*valDestructor)(void *privdata, void *obj);
} dictType;
时间复杂度(读数据)
查找数据,哈希表 O ( 1 ) O(1) O(1) 时间复杂度,但是哈希表也会存在碰撞问题,所以哈希索引指向的列表长度也会影响效率。
#define dictHashKey(d, key) (d)->type->hashFunction(key)
dictEntry *dictFind(dict *d, const void *key) {
dictEntry *he;
uint64_t h, idx, table;
if (d->ht[0].used + d->ht[1].used == 0) return NULL; /* dict is empty */
if (dictIsRehashing(d)) _dictRehashStep(d);
h = dictHashKey(d, key);
for (table = 0; table <= 1; table++) {
idx = h & d->ht[table].sizemask;
he = d->ht[table].table[idx];
while(he) {
// 如果 key 已经存在则返回错误。
if (key==he->key || dictCompareKeys(d, key, he->key))
return he;
he = he->next;
}
// 如果数据正在迁移,从第二张表上查找。
if (!dictIsRehashing(d)) return NULL;
}
return NULL;
}
工作流程
- 堆栈调用流程,下面会通过这个堆栈函数调用时序,看以下写操作的源码流程:
调试方法,可以参考视频
- bilibili: Debug Redis in VsCode with Gdb
- youtube: Debug Redis in VsCode with Gdb
#0 dictAdd (d=0x100529310, key=0x1018000b1, val=0x101800090) at dict.c:324
#1 0x000000010002bb9c in dbAdd (db=0x101005800, key=0x101800070, val=0x101800090) at db.c:159
#2 0x000000010002bd5c in setKey (db=0x101005800, key=0x101800070, val=0x101800090) at db.c:186
#3 0x000000010003abad in setGenericCommand (c=0x101015400, flags=0, key=0x101800070, val=0x101800090, expire=0x0, unit=0, ok_reply=0x0, abort_reply=0x0) at t_string.c:86
#4 0x000000010003afdd in setCommand (c=0x101015400) at t_string.c:139
#5 0x000000010001052d in call (c=0x101015400, flags=15) at server.c:2252
#6 0x00000001000112ac in processCommand (c=0x101015400) at server.c:2531
#7 0x0000000100025619 in processInputBuffer (c=0x101015400) at networking.c:1299
#8 0x0000000100021cb8 in readQueryFromClient (el=0x100528ba0, fd=5, privdata=0x101015400, mask=1) at networking.c:1363
#9 0x000000010000583c in aeProcessEvents (eventLoop=0x100528ba0, flags=3) at ae.c:412
#10 0x0000000100005ede in aeMain (eventLoop=0x100528ba0) at ae.c:455
#11 0x00000001000159d7 in main (argc=2, argv=0x7ffeefbff8c8) at server.c:4114
写数据
保存数据
数据库保存数据时,先检查这个键是否已经存在,从而分开添加,删除逻辑。
/* High level Set operation. This function can be used in order to set
* a key, whatever it was existing or not, to a new object.
*
* 1) The ref count of the value object is incremented.
* 2) clients WATCHing for the destination key notified.
* 3) The expire time of the key is reset (the key is made persistent). */
void setKey(redisDb *db, robj *key, robj *val) {
if (lookupKeyWrite(db,key) == NULL) {
dbAdd(db,key,val);
} else {
dbOverwrite(db,key,val);
}
incrRefCount(val);
removeExpire(db,key);
signalModifiedKey(db,key);
}
添加数据
要添加一个元素,首先需要申请一个空间,申请空间涉及到是否需要扩容,key 是否已经存在了。
/* Add an element to the target hash table */
int dictAdd(dict *d, void *key, void *val) {
dictEntry *entry = dictAddRaw(d,key);
if (!entry) return DICT_ERR;
dictSetVal(d, entry, val);
return DICT_OK;
}
增加数据结点
/* Low level add. This function adds the entry but instead of setting
* a value returns the dictEntry structure to the user, that will make
* sure to fill the value field as he wishes.
*
* This function is also directly exposed to the user API to be called
* mainly in order to store non-pointers inside the hash value, example:
*
* entry = dictAddRaw(dict,mykey);
* if (entry != NULL) dictSetSignedIntegerVal(entry,1000);
*
* Return values:
*
* If key already exists NULL is returned.
* If key was added, the hash entry is returned to be manipulated by the caller.
*/
dictEntry *dictAddRaw(dict *d, void *key) {
int index;
dictEntry *entry;
dictht *ht;
if (dictIsRehashing(d)) _dictRehashStep(d);
/* Get the index of the new element, or -1 if
* the element already exists. */
// 检查 key 是否存在,避免重复添加。
if ((index = _dictKeyIndex(d, key)) == -1)
return NULL;
/* Allocate the memory and store the new entry.
* Insert the element in top, with the assumption that in a database
* system it is more likely that recently added entries are accessed
* more frequently. */
// 如果哈希表正在迁移数据,操作哈希表2.
ht = dictIsRehashing(d) ? &d->ht[1] : &d->ht[0];
entry = zmalloc(sizeof(*entry));
entry->next = ht->table[index];
ht->table[index] = entry;
ht->used++;
/* Set the hash entry fields. */
dictSetKey(d, entry, key);
return entry;
}
哈希索引
/* Returns the index of a free slot that can be populated with
* a hash entry for the given 'key'.
* If the key already exists, -1 is returned.
*
* Note that if we are in the process of rehashing the hash table, the
* index is always returned in the context of the second (new) hash table. */
static int _dictKeyIndex(dict *d, const void *key) {
unsigned int h, idx, table;
dictEntry *he;
/* Expand the hash table if needed */
if (_dictExpandIfNeeded(d) == DICT_ERR)
return -1;
/* Compute the key hash value */
h = dictHashKey(d, key);
for (table = 0; table <= 1; table++) {
idx = h & d->ht[table].sizemask;
/* Search if this slot does not already contain the given key */
he = d->ht[table].table[idx];
while(he) {
// 如果 key 已经存在则返回错误。
if (key==he->key || dictCompareKeys(d, key, he->key))
return -1;
he = he->next;
}
// 如果哈希表处在数据迁移状态,从第二张表上查找。
if (!dictIsRehashing(d)) break;
}
return idx;
}
数据迁移
哈希表数据迁移
避免数据量大,一次性迁移需要耗费大量资源。每次只迁移部分数据。
/* This function performs just a step of rehashing, and only if there are
* no safe iterators bound to our hash table. When we have iterators in the
* middle of a rehashing we can't mess with the two hash tables otherwise
* some element can be missed or duplicated.
*
* This function is called by common lookup or update operations in the
* dictionary so that the hash table automatically migrates from H1 to H2
* while it is actively used. */
static void _dictRehashStep(dict *d) {
if (d->iterators == 0) dictRehash(d,1);
}
/* Performs N steps of incremental rehashing. Returns 1 if there are still
* keys to move from the old to the new hash table, otherwise 0 is returned.
*
* Note that a rehashing step consists in moving a bucket (that may have more
* than one key as we use chaining) from the old to the new hash table, however
* since part of the hash table may be composed of empty spaces, it is not
* guaranteed that this function will rehash even a single bucket, since it
* will visit at max N*10 empty buckets in total, otherwise the amount of
* work it does would be unbound and the function may block for a long time. */
int dictRehash(dict *d, int n) {
// empty_visits 记录哈希表最大遍历空桶个数。
int empty_visits = n*10; /* Max number of empty buckets to visit. */
if (!dictIsRehashing(d)) return 0;
// 从 ht[0] rehashidx 位置开始遍历 n 个桶进行数据迁移。
while(n-- && d->ht[0].used != 0) {
dictEntry *de, *nextde;
/* Note that rehashidx can't overflow as we are sure there are more
* elements because ht[0].used != 0 */
assert(d->ht[0].size > (unsigned long)d->rehashidx);
while(d->ht[0].table[d->rehashidx] == NULL) {
d->rehashidx++;
// 当遍历限制的空桶数量后,返回。
if (--empty_visits == 0) return 1;
}
// 获取桶上的数据链表
de = d->ht[0].table[d->rehashidx];
/* Move all the keys in this bucket from the old to the new hash HT */
while(de) {
unsigned int h;
nextde = de->next;
/* Get the index in the new hash table */
h = dictHashKey(d, de->key) & d->ht[1].sizemask;
// 旧的数据链表插入新的数据链表前面。
de->next = d->ht[1].table[h];
d->ht[1].table[h] = de;
d->ht[0].used--;
d->ht[1].used++;
de = nextde;
}
d->ht[0].table[d->rehashidx] = NULL;
d->rehashidx++;
}
// 数据迁移完毕,重置哈希表两个 table。
/* Check if we already rehashed the whole table... */
if (d->ht[0].used == 0) {
zfree(d->ht[0].table);
d->ht[0] = d->ht[1];
_dictReset(&d->ht[1]);
d->rehashidx = -1;
return 0;
}
/* More to rehash... */
return 1;
}
定时执行任务
/* Rehash for an amount of time between ms milliseconds and ms+1 milliseconds */
int dictRehashMilliseconds(dict *d, int ms) {
long long start = timeInMilliseconds();
int rehashes = 0;
while(dictRehash(d,100)) {
rehashes += 100;
if (timeInMilliseconds()-start > ms) break;
}
return rehashes;
}
扩容缩容
dict 是 redis 使用对基础数据之一,该数据结构有动态扩容和缩容功能。
是否需要扩容
/* Expand the hash table if needed */
static int _dictExpandIfNeeded(dict *d) {
/* Incremental rehashing already in progress. Return. */
if (dictIsRehashing(d)) return DICT_OK;
/* If the hash table is empty expand it to the initial size. */
if (d->ht[0].size == 0) return dictExpand(d, DICT_HT_INITIAL_SIZE);
/* If we reached the 1:1 ratio, and we are allowed to resize the hash
* table (global setting) or we should avoid it but the ratio between
* elements/buckets is over the "safe" threshold, we resize doubling
* the number of buckets. */
// 当使用的数据大于哈希表大小就可以扩展了。`dict_can_resize` 不允许扩展,那么数据的使用与哈希表的大小对比,要超出一个比率才能扩展内存。
if (d->ht[0].used >= d->ht[0].size &&
(dict_can_resize ||
d->ht[0].used/d->ht[0].size > dict_force_resize_ratio)) {
// 使用数据大小的两倍增长
return dictExpand(d, d->ht[0].used*2);
}
return DICT_OK;
}
扩容容量大小
/* Our hash table capability is a power of two */
static unsigned long _dictNextPower(unsigned long size) {
unsigned long i = DICT_HT_INITIAL_SIZE;
// 新容量大小是 2 的 n 次方,并且这个数值是第一个大于 2 * 原长度 的值。
if (size >= LONG_MAX) return LONG_MAX;
while(1) {
if (i >= size)
return i;
i *= 2;
}
}
扩容
/* Expand or create the hash table */
int dictExpand(dict *d, unsigned long size) {
dictht n; /* the new hash table */
unsigned long realsize = _dictNextPower(size);
/* the size is invalid if it is smaller than the number of
* elements already inside the hash table */
if (dictIsRehashing(d) || d->ht[0].used > size)
return DICT_ERR;
/* Rehashing to the same table size is not useful. */
if (realsize == d->ht[0].size) return DICT_ERR;
/* Allocate the new hash table and initialize all pointers to NULL */
n.size = realsize;
n.sizemask = realsize-1;
n.table = zcalloc(realsize*sizeof(dictEntry*));
n.used = 0;
/* Is this the first initialization? If so it's not really a rehashing
* we just set the first hash table so that it can accept keys. */
// 如果哈希表还是空的,给表1分配空间,否则空间分配给表2
if (d->ht[0].table == NULL) {
d->ht[0] = n;
return DICT_OK;
}
/* Prepare a second hash table for incremental rehashing */
d->ht[1] = n;
d->rehashidx = 0;
return DICT_OK;
}
缩容
- 缩容,部分删除操作,会触发重新重新分配内存进行存储。
#define HASHTABLE_MIN_FILL 10 /* Minimal hash table fill 10% */
int zsetDel(robj *zobj, sds ele) {
...
if (htNeedsResize(zs->dict)) dictResize(zs->dict);
...
}
int htNeedsResize(dict *dict) {
long long size, used;
size = dictSlots(dict);
used = dictSize(dict);
return (size > DICT_HT_INITIAL_SIZE &&
(used*100/size < HASHTABLE_MIN_FILL));
}
/* Resize the table to the minimal size that contains all the elements,
* but with the invariant of a USED/BUCKETS ratio near to <= 1 */
int dictResize(dict *d) {
int minimal;
if (!dict_can_resize || dictIsRehashing(d)) return DICT_ERR;
minimal = d->ht[0].used;
if (minimal < DICT_HT_INITIAL_SIZE)
minimal = DICT_HT_INITIAL_SIZE;
return dictExpand(d, minimal);
}
参考
问题
- iterator 作用是啥。
- scan 的用法。
本文深入探讨了Redis中字典(dict)数据结构的内部机制,包括哈希表的实现细节,如O(1)时间复杂度的高效读取,渐进式数据迁移策略,以及动态扩容和缩容功能。此外,还分析了字典在Redis数据库中的关键作用,如数据保存、查找和更新操作的流程。
1087

被折叠的 条评论
为什么被折叠?



