import tensorflow as tf #导入
w = tf.Variable([[0.1,1.0]]) #定义变量
x = tf.Variable([[2.0],[1.0]])
y = tf.matmul(w,x) #矩阵乘法
print(w) #输出
print(x)
print(y)
init_op = tf.global_variables_initializer() #变量全局初始化
with tf.Session as sess: #定义会话图
sess.run(init_op) #运行会话
print(y。eval()) #输出
tf.zeros([3,4],tf.float32) #零矩阵
tensor = tf.constant([1,2,3,3]) #常量
tf.linspace(10,12,3,name="linspace")
#'tensor' is ([1,2,3],[4,5,6])
tf.zeros_like(tensor) #[[0,0,0],[0,0,0]]
tf.ones_like(tensor) #[[1,1,1],[1,1,1]]
#创建正态分布
norm = tf.random_normal([2,3],mean=-1,stddev=4)#结构、均值、方差
#洗牌操作
c = tf.consant([[1,2],[3,4],[5,6]])
shuff = tf.random_shuffle(c) #[[1,2,,[5,6],[3,4]]
#运行
sess = tf.Session()
print(sess.run(norm))
print(sess.run(shuff))
一个小例子
state = tf.Variable(0)
new_value = tf.add(state,tf.constant(1))
update = tf.assign(state,new_value)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
print(sess.run(state))
for _ in range(3):
sess.run(update)
print(sess.run(state))
#保存sess
save_path = saver.save(sess,"C://tensorflow//model//test")
print("Model saved in file:",save_path)
#占位符
input1 = tf.placeholder(tf.float32)
input2 = tf.placeholder(tf.float32)
output = tf.multiply(input1,input2) #乘法
with tf.Session() as sess:
print(sess.run([output],feed_dict={input1:[7.],input2:[2.]}))