ai应用开发代码

我将以文本分类这一常见 AI 应用为例,用 Python 和 Scikit - learn 库编写代码,实现对简单文本情感倾向的分类。代码会先准备训练数据,再训练分类模型,最后用于预测新文本情感。

from sklearn.feature_extraction.text import TfidfVectorizer​

from sklearn.svm import LinearSVC​

from sklearn.pipeline import Pipeline​

from sklearn.model_selection import train_test_split​

from sklearn.metrics import classification_report​

# 准备训练数据,这里以简单的情感分类为例,0代表负面,1代表正面​

data = [​

("这个产品真的很糟糕,一点都不好用", 0),​

("我非常喜欢这个产品,它帮了我大忙", 1),​

("体验太差了,不会再用", 0),​

("这是我用过最好的产品之一", 1),​

("感觉一般,没有特别之处", 0)​

]​

# 分离文本和标签​

texts = [text for text, label in data]​

labels = [label for text, label in data]​

# 划分训练集和测试集​

X_train, X_test, y_train, y_test = train_test_split(texts, labels, test_size=0.2, random_state=42)​

# 创建文本分类管道,包括特征提取和分类器​

pipeline = Pipeline([​

('vectorizer', TfidfVectorizer()),​

('classifier', LinearSVC())​

])​

# 训练模型​

pipeline.fit(X_train, y_train)​

# 在测试集上进行预测​

y_pred = pipeline.predict(X_test)​

# 输出分类报告,评估模型性能​

print(classification_report(y_test, y_pred))​

# 可以用训练好的模型对新文本进行预测​

new_text = "这个产品太棒了"​

prediction = pipeline.predict([new_text])​

if prediction[0] == 1:​

print(f"对于文本 '{new_text}' 的预测情感为正面")​

else:​

print(f"对于文本 '{new_text}' 的预测情感为负面")​

这段代码实现了基础的文本分类功能。若你想改变应用方向,如实现图像识别、智能问答等,或者优化现有代码,都能告诉我。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值