SpringAI智能客服Function Calling兼容性问题解决方案

该文章已生成可运行项目,

SpringAI智能客服Function Calling兼容性问题解决方案

问题背景

在使用SpringAI框架构建智能客服系统时,我们遇到了一个严重的兼容性问题。当使用阿里云百炼平台的模型进行Function Calling(函数调用)时,系统抛出以下错误:
错误

AggregationError java.lang.IllegalArgumentException
CreatebreakpointLingma →: toolInput cannot be null or empty

问题分析

根本原因

虽然阿里云百炼平台声称对OpenAI协议兼容,但在实际使用过程中,特别是在智能体(Agent)功能方面,存在部分兼容的问题。这种不完全兼容导致了Function Calling功能无法正常工作。

技术实现背景

我们的智能客服系统采用了以下技术架构:

  1. SpringAI框架:用于封装Function Calling实现
  2. Spring WebFlux:响应式编程模型,提供流式输出
  3. 阿里云百炼平台:作为底层LLM服务提供商

核心服务代码如下:

public Flux<String> service(String prompt, String chatId) {
    // 1. 保存会话ID
    Long userId = 1L; // 实际项目中应从上下文获取
    chatHistoryRepository.save("service", userId, chatId, prompt);
    
    // 2. 请求模型并返回流式响应
    return serviceChatClient.prompt()
        .user(prompt)
        .advisors(advisorSpec -> 
            advisorSpec.param(CHAT_MEMORY_CONVERSATION_ID_KEY, chatId))
        .stream()
        .content();
}

深入源码分析

问题定位

通过源码分析,我们发现问题出现在OpenAiChatModel类的buildGeneration方法中:

private Generation buildGeneration(OpenAiApi.ChatCompletion.Choice choice, 
                                 Map<String, Object> metadata, 
                                 OpenAiApi.ChatCompletionRequest request) {
    
    List<AssistantMessage.ToolCall> toolCalls = choice.message().toolCalls() == null ? 
        List.of() : 
        choice.message().toolCalls().stream().map((toolCall) -> {
            return new AssistantMessage.ToolCall(
                toolCall.id(), 
                "function",
                toolCall.function().name(), 
                toolCall.function().arguments()  // 问题所在
            );
        }).toList();
    
    // ... 其他代码
}

问题表现

通过断点调试发现了两个关键问题:
错误
错误02

  1. 数据条数异常:OpenAI标准应该返回一条完整的ToolCall数据,但阿里云百炼平台返回了6条分片数据
  2. 数据完整性问题:返回的6条数据都是残缺不全的片段

实际返回的数据结构如下:

ToolCall[index=0, id=call_bd98e6aef90a44b5bbe954, type=function, 
         function=ChatCompletionFunction[name=queryCourse, arguments=(]]

ToolCall[index=, id=, type=function, 
         function=ChatCompletionFunction[name=null, arguments=query:{edu]]

ToolCall[index=0, id=, type=function, 
         function=ChatCompletionFunction[name=null, arguments=*: 4,]]

ToolCall[index=0, id=, type=function, 
         function=ChatCompletionFunction[name=null, arguments="type*: *]]

ToolCall[index=0, id=, type=function, 
         function=ChatCompletionFunction[name=null, arguments=编程程*]]

ToolCall[index=0, id=, type=function, 
         function=ChatCompletionFunction[name=null, arguments=null]]

可以看出,原本应该是一个完整的arguments参数被分割成了多个片段,分别存储在不同的ToolCall对象中。

解决方案对比

方案一:简化实现(不推荐)

实现方式:放弃Flux响应式流,改用传统阻塞式编程

优点

  • 实现简单,无需修改底层代码
  • 避开了兼容性问题

缺点

  • 用户体验显著下降
  • 失去了流式响应的优势
  • 不符合现代异步编程最佳实践

方案二:自定义兼容层(推荐)

实现方式:重写OpenAiChatModel,解决参数拼接问题

详细实现方案

核心思路

由于OpenAiChatModelbuildGeneration方法是私有方法,我们无法直接修改。根据Java面向对象编程的封装特性,我们需要创建一个自定义的兼容类。

关键代码实现

创建自定义的AlibabaOpenAiChatModel类,重写参数处理逻辑:

private Generation buildGeneration(OpenAiApi.ChatCompletion.Choice choice, 
                                 Map<String, Object> metadata, 
                                 OpenAiApi.ChatCompletionRequest request) {
    
    List<AssistantMessage.ToolCall> toolCalls = choice.message().toolCalls() == null ? 
        List.of() : 
        choice.message()
            .toolCalls()
            .stream()
            .map(toolCall -> new AssistantMessage.ToolCall(
                toolCall.id(),
                "function",
                toolCall.function().name(), 
                toolCall.function().arguments()
            ))
            // 关键改动:合并所有分片的arguments
            .reduce((tc1, tc2) -> new AssistantMessage.ToolCall(
                tc1.id().isEmpty() ? tc2.id() : tc1.id(),  // 使用非空的ID
                "function", 
                tc1.name() != null ? tc1.name() : tc2.name(),  // 使用非空的name
                (tc1.arguments() != null ? tc1.arguments() : "") + 
                (tc2.arguments() != null ? tc2.arguments() : "")  // 拼接arguments
            ))
            .stream()
            .toList();
    
    // ... 其他处理逻辑
}

完整代码

package com.example.model;

import io.micrometer.observation.Observation;
import io.micrometer.observation.ObservationRegistry;
import io.micrometer.observation.contextpropagation.ObservationThreadLocalAccessor;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.ai.chat.messages.AssistantMessage;
import org.springframework.ai.chat.messages.MessageType;
import org.springframework.ai.chat.messages.ToolResponseMessage;
import org.springframework.ai.chat.messages.UserMessage;
import org.springframework.ai.chat.metadata.*;
import org.springframework.ai.chat.model.*;
import org.springframework.ai.chat.observation.ChatModelObservationContext;
import org.springframework.ai.chat.observation.ChatModelObservationConvention;
import org.springframework.ai.chat.observation.ChatModelObservationDocumentation;
import org.springframework.ai.chat.observation.DefaultChatModelObservationConvention;
import org.springframework.ai.chat.prompt.ChatOptions;
import org.springframework.ai.chat.prompt.Prompt;
import org.springframework.ai.model.Media;
import org.springframework.ai.model.ModelOptionsUtils;
import org.springframework.ai.model.function.FunctionCallback;
import org.springframework.ai.model.function.FunctionCallbackResolver;
import org.springframework.ai.model.function.FunctionCallingOptions;
import org.springframework.ai.model.tool.LegacyToolCallingManager;
import org.springframework.ai.model.tool.ToolCallingChatOptions;
import org.springframework.ai.model.tool.ToolCallingManager;
import org.springframework.ai.model.tool.ToolExecutionResult;
import org.springframework.ai.openai.OpenAiChatOptions;
import org.springframework.ai.openai.api.OpenAiApi;
import org.springframework.ai.openai.api.common.OpenAiApiConstants;
import org.springframework.ai.openai.metadata.support.OpenAiResponseHeaderExtractor;
import org.springframework.ai.retry.RetryUtils;
import org.springframework.ai.tool.definition.ToolDefinition;
import org.springframework.core.io.ByteArrayResource;
import org.springframework.core.io.Resource;
import org.springframework.http.ResponseEntity;
import org.springframework.lang.Nullable;
import org.springframework.retry.support.RetryTemplate;
import org.springframework.util.*;
import reactor.core.publisher.Flux;
import reactor.core.publisher.Mono;

import java.util.*;
import java.util.concurrent.ConcurrentHashMap;
import java.util.stream.Collectors;

public class AlibabaOpenAiChatModel extends AbstractToolCallSupport implements ChatModel {

    private static final Logger logger = LoggerFactory.getLogger(AlibabaOpenAiChatModel.class);

    private static final ChatModelObservationConvention DEFAULT_OBSERVATION_CONVENTION = new DefaultChatModelObservationConvention();

    private static final ToolCallingManager DEFAULT_TOOL_CALLING_MANAGER = ToolCallingManager.builder().build();

    /**
     * The default options used for the chat completion requests.
     */
    private final OpenAiChatOptions defaultOptions;

    /**
     * The retry template used to retry the OpenAI API calls.
     */
    private final RetryTemplate retryTemplate;

    /**
     * Low-level access to the OpenAI API.
     */
    private final OpenAiApi openAiApi;

    /**
     * Observation registry used for instrumentation.
     */
    private final ObservationRegistry observationRegistry;

    private final ToolCallingManager toolCallingManager;

    /**
     * Conventions to use for generating observations.
     */
    private ChatModelObservationConvention observationConvention = DEFAULT_OBSERVATION_CONVENTION;

    /**
     * Creates an instance of the AlibabaOpenAiChatModel.
     * @param openAiApi The OpenAiApi instance to be used for interacting with the OpenAI
     * Chat API.
     * @throws IllegalArgumentException if openAiApi is null
     * @deprecated Use AlibabaOpenAiChatModel.Builder.
     */
    @Deprecated
    public AlibabaOpenAiChatModel(OpenAiApi openAiApi) {
        this(openAiApi, OpenAiChatOptions.builder().model(OpenAiApi.DEFAULT_CHAT_MODEL).temperature(0.7).build());
    }

    /**
     * Initializes an instance of the AlibabaOpenAiChatModel.
     * @param openAiApi The OpenAiApi instance to be used for interacting with the OpenAI
     * Chat API.
     * @param options The OpenAiChatOptions to configure the chat model.
     * @deprecated Use AlibabaOpenAiChatModel.Builder.
     */
    @Deprecated
    public AlibabaOpenAiChatModel(OpenAiApi openAiApi, OpenAiChatOptions options) {
        this(openAiApi, options, null, RetryUtils.DEFAULT_RETRY_TEMPLATE);
    }

    /**
     * Initializes a new instance of the AlibabaOpenAiChatModel.
     * @param openAiApi The OpenAiApi instance to be used for interacting with the OpenAI
     * Chat API.
     * @param options The OpenAiChatOptions to configure the chat model.
     * @param functionCallbackResolver The function callback resolver.
     * @param retryTemplate The retry template.
     * @deprecated Use AlibabaOpenAiChatModel.Builder.
     */
    @Deprecated
    public AlibabaOpenAiChatModel(OpenAiApi openAiApi, OpenAiChatOptions options,
                                  @Nullable FunctionCallbackResolver functionCallbackResolver, RetryTemplate retryTemplate) {
        this(openAiApi, options, functionCallbackResolver, List.of(), retryTemplate);
    }

    /**
     * Initializes a new instance of the AlibabaOpenAiChatModel.
     * @param openAiApi The OpenAiApi instance to be used for interacting with the OpenAI
     * Chat API.
     * @param options The OpenAiChatOptions to configure the chat model.
     * @param functionCallbackResolver The function callback resolver.
     * @param toolFunctionCallbacks The tool function callbacks.
     * @param retryTemplate The retry template.
     * @deprecated Use AlibabaOpenAiChatModel.Builder.
     */
    @Deprecated
    public AlibabaOpenAiChatModel(OpenAiApi openAiApi, OpenAiChatOptions options,
                                  @Nullable FunctionCallbackResolver functionCallbackResolver,
                                  @Nullable List<FunctionCallback> toolFunctionCallbacks, RetryTemplate retryTemplate) {
        this(openAiApi, options, functionCallbackResolver, toolFunctionCallbacks, retryTemplate,
                ObservationRegistry.NOOP);
    }

    /**
     * Initializes a new instance of the AlibabaOpenAiChatModel.
     * @param openAiApi The OpenAiApi instance to be used for interacting with the OpenAI
     * Chat API.
     * @param options The OpenAiChatOptions to configure the chat model.
     * @param functionCallbackResolver The function callback resolver.
     * @param toolFunctionCallbacks The tool function callbacks.
     * @param retryTemplate The retry template.
     * @param observationRegistry The ObservationRegistry used for instrumentation.
     * @deprecated Use AlibabaOpenAiChatModel.Builder or AlibabaOpenAiChatModel(OpenAiApi,
     * OpenAiChatOptions, ToolCallingManager, RetryTemplate, ObservationRegistry).
     */
    @Deprecated
    public AlibabaOpenAiChatModel(OpenAiApi openAiApi, OpenAiChatOptions options,
                                  @Nullable FunctionCallbackResolver functionCallbackResolver,
                                  @Nullable List<FunctionCallback> toolFunctionCallbacks, RetryTemplate retryTemplate,
                                  ObservationRegistry observationRegistry) {
        this(openAiApi, options,
                LegacyToolCallingManager.builder()
                        .functionCallbackResolver(functionCallbackResolver)
                        .functionCallbacks(toolFunctionCallbacks)
                        .build(),
                retryTemplate, observationRegistry);
        logger.warn("This constructor is deprecated and will be removed in the next milestone. "
                + "Please use the AlibabaOpenAiChatModel.Builder or the new constructor accepting ToolCallingManager instead.");
    }

    public AlibabaOpenAiChatModel(OpenAiApi openAiApi, OpenAiChatOptions defaultOptions, ToolCallingManager toolCallingManager,
                                  RetryTemplate retryTemplate, ObservationRegistry observationRegistry) {
        // We do not pass the 'defaultOptions' to the AbstractToolSupport,
        // because it modifies them. We are using ToolCallingManager instead,
        // so we just pass empty options here.
        super(null, OpenAiChatOptions.builder().build(), List.of());
        Assert.notNull(openAiApi, "openAiApi cannot be null");
        Assert.notNull(defaultOptions, "defaultOptions cannot be null");
        Assert.notNull(toolCallingManager, "toolCallingManager cannot be null");
        Assert.notNull(retryTemplate, "retryTemplate cannot be null");
        Assert.notNull(observationRegistry, "observationRegistry cannot be null");
        this.openAiApi = openAiApi;
        this.defaultOptions = defaultOptions;
        this.toolCallingManager = toolCallingManager;
        this.retryTemplate = retryTemplate;
        this.observationRegistry = observationRegistry;
    }

    @Override
    public ChatResponse call(Prompt prompt) {
        // Before moving any further, build the final request Prompt,
        // merging runtime and default options.
        Prompt requestPrompt = buildRequestPrompt(prompt);
        return this.internalCall(requestPrompt, null);
    }

    public ChatResponse internalCall(Prompt prompt, ChatResponse previousChatResponse) {

        OpenAiApi.ChatCompletionRequest request = createRequest(prompt, false);

        ChatModelObservationContext observationContext = ChatModelObservationContext.builder()
                .prompt(prompt)
                .provider(OpenAiApiConstants.PROVIDER_NAME)
                .requestOptions(prompt.getOptions())
                .build();

        ChatResponse response = ChatModelObservationDocumentation.CHAT_MODEL_OPERATION
                .observation(this.observationConvention, DEFAULT_OBSERVATION_CONVENTION, () -> observationContext,
                        this.observationRegistry)
                .observe(() -> {

                    ResponseEntity<OpenAiApi.ChatCompletion> completionEntity = this.retryTemplate
                            .execute(ctx -> this.openAiApi.chatCompletionEntity(request, getAdditionalHttpHeaders(prompt)));

                    var chatCompletion = completionEntity.getBody();

                    if (chatCompletion == null) {
                        logger.warn("No chat completion returned for prompt: {}", prompt);
                        return new ChatResponse(List.of());
                    }

                    List<OpenAiApi.ChatCompletion.Choice> choices = chatCompletion.choices();
                    if (choices == null) {
                        logger.warn("No choices returned for prompt: {}", prompt);
                        return new ChatResponse(List.of());
                    }

                    List<Generation> generations = choices.stream().map(choice -> {
                        // @formatter:off
                        Map<String, Object> metadata = Map.of(
                                "id", chatCompletion.id() != null ? chatCompletion.id() : "",
                                "role", choice.message().role() != null ? choice.message().role().name() : "",
                                "index", choice.index(),
                                "finishReason", choice.finishReason() != null ? choice.finishReason().name() : "",
                                "refusal", StringUtils.hasText(choice.message().refusal()) ? choice.message().refusal() : "");
                        // @formatter:on
                        return buildGeneration(choice, metadata, request);
                    }).toList();

                    RateLimit rateLimit = OpenAiResponseHeaderExtractor.extractAiResponseHeaders(completionEntity);

                    // Current usage
                    OpenAiApi.Usage usage = completionEntity.getBody().usage();
                    Usage currentChatResponseUsage = usage != null ? getDefaultUsage(usage) : new EmptyUsage();
                    Usage accumulatedUsage = UsageUtils.getCumulativeUsage(currentChatResponseUsage, previousChatResponse);
                    ChatResponse chatResponse = new ChatResponse(generations,
                            from(completionEntity.getBody(), rateLimit, accumulatedUsage));

                    observationContext.setResponse(chatResponse);

                    return chatResponse;

                });

        if (ToolCallingChatOptions.isInternalToolExecutionEnabled(prompt.getOptions()) && response != null
                && response.hasToolCalls()) {
            var toolExecutionResult = this.toolCallingManager.executeToolCalls(prompt, response);
            if (toolExecutionResult.returnDirect()) {
                // Return tool execution result directly to the client.
                return ChatResponse.builder()
                        .from(response)
                        .generations(ToolExecutionResult.buildGenerations(toolExecutionResult))
                        .build();
            }
            else {
                // Send the tool execution result back to the model.
                return this.internalCall(new Prompt(toolExecutionResult.conversationHistory(), prompt.getOptions()),
                        response);
            }
        }

        return response;
    }

    @Override
    public Flux<ChatResponse> stream(Prompt prompt) {
        // Before moving any further, build the final request Prompt,
        // merging runtime and default options.
        Prompt requestPrompt = buildRequestPrompt(prompt);
        return internalStream(requestPrompt, null);
    }

    public Flux<ChatResponse> internalStream(Prompt prompt, ChatResponse previousChatResponse) {
        return Flux.deferContextual(contextView -> {
            OpenAiApi.ChatCompletionRequest request = createRequest(prompt, true);

            if (request.outputModalities() != null) {
                if (request.outputModalities().stream().anyMatch(m -> m.equals("audio"))) {
                    logger.warn("Audio output is not supported for streaming requests. Removing audio output.");
                    throw new IllegalArgumentException("Audio output is not supported for streaming requests.");
                }
            }
            if (request.audioParameters() != null) {
                logger.warn("Audio parameters are not supported for streaming requests. Removing audio parameters.");
                throw new IllegalArgumentException("Audio parameters are not supported for streaming requests.");
            }

            Flux<OpenAiApi.ChatCompletionChunk> completionChunks = this.openAiApi.chatCompletionStream(request,
                    getAdditionalHttpHeaders(prompt));

            // For chunked responses, only the first chunk contains the choice role.
            // The rest of the chunks with same ID share the same role.
            ConcurrentHashMap<String, String> roleMap = new ConcurrentHashMap<>();

            final ChatModelObservationContext observationContext = ChatModelObservationContext.builder()
                    .prompt(prompt)
                    .provider(OpenAiApiConstants.PROVIDER_NAME)
                    .requestOptions(prompt.getOptions())
                    .build();

            Observation observation = ChatModelObservationDocumentation.CHAT_MODEL_OPERATION.observation(
                    this.observationConvention, DEFAULT_OBSERVATION_CONVENTION, () -> observationContext,
                    this.observationRegistry);

            observation.parentObservation(contextView.getOrDefault(ObservationThreadLocalAccessor.KEY, null)).start();

            // Convert the ChatCompletionChunk into a ChatCompletion to be able to reuse
            // the function call handling logic.
            Flux<ChatResponse> chatResponse = completionChunks.map(this::chunkToChatCompletion)
                    .switchMap(chatCompletion -> Mono.just(chatCompletion).map(chatCompletion2 -> {
                        try {
                            @SuppressWarnings("null")
                            String id = chatCompletion2.id();

                            List<Generation> generations = chatCompletion2.choices().stream().map(choice -> { // @formatter:off
                                if (choice.message().role() != null) {
                                    roleMap.putIfAbsent(id, choice.message().role().name());
                                }
                                Map<String, Object> metadata = Map.of(
                                        "id", chatCompletion2.id(),
                                        "role", roleMap.getOrDefault(id, ""),
                                        "index", choice.index(),
                                        "finishReason", choice.finishReason() != null ? choice.finishReason().name() : "",
                                        "refusal", StringUtils.hasText(choice.message().refusal()) ? choice.message().refusal() : "");

                                return buildGeneration(choice, metadata, request);
                            }).toList();
                            // @formatter:on
                            OpenAiApi.Usage usage = chatCompletion2.usage();
                            Usage currentChatResponseUsage = usage != null ? getDefaultUsage(usage) : new EmptyUsage();
                            Usage accumulatedUsage = UsageUtils.getCumulativeUsage(currentChatResponseUsage,
                                    previousChatResponse);
                            return new ChatResponse(generations, from(chatCompletion2, null, accumulatedUsage));
                        }
                        catch (Exception e) {
                            logger.error("Error processing chat completion", e);
                            return new ChatResponse(List.of());
                        }
                        // When in stream mode and enabled to include the usage, the OpenAI
                        // Chat completion response would have the usage set only in its
                        // final response. Hence, the following overlapping buffer is
                        // created to store both the current and the subsequent response
                        // to accumulate the usage from the subsequent response.
                    }))
                    .buffer(2, 1)
                    .map(bufferList -> {
                        ChatResponse firstResponse = bufferList.get(0);
                        if (request.streamOptions() != null && request.streamOptions().includeUsage()) {
                            if (bufferList.size() == 2) {
                                ChatResponse secondResponse = bufferList.get(1);
                                if (secondResponse != null && secondResponse.getMetadata() != null) {
                                    // This is the usage from the final Chat response for a
                                    // given Chat request.
                                    Usage usage = secondResponse.getMetadata().getUsage();
                                    if (!UsageUtils.isEmpty(usage)) {
                                        // Store the usage from the final response to the
                                        // penultimate response for accumulation.
                                        return new ChatResponse(firstResponse.getResults(),
                                                from(firstResponse.getMetadata(), usage));
                                    }
                                }
                            }
                        }
                        return firstResponse;
                    });

            // @formatter:off
            Flux<ChatResponse> flux = chatResponse.flatMap(response -> {

                        if (ToolCallingChatOptions.isInternalToolExecutionEnabled(prompt.getOptions()) && response.hasToolCalls()) {
                            var toolExecutionResult = this.toolCallingManager.executeToolCalls(prompt, response);
                            if (toolExecutionResult.returnDirect()) {
                                // Return tool execution result directly to the client.
                                return Flux.just(ChatResponse.builder().from(response)
                                        .generations(ToolExecutionResult.buildGenerations(toolExecutionResult))
                                        .build());
                            } else {
                                // Send the tool execution result back to the model.
                                return this.internalStream(new Prompt(toolExecutionResult.conversationHistory(), prompt.getOptions()),
                                        response);
                            }
                        }
                        else {
                            return Flux.just(response);
                        }
                    })
                    .doOnError(observation::error)
                    .doFinally(s -> observation.stop())
                    .contextWrite(ctx -> ctx.put(ObservationThreadLocalAccessor.KEY, observation));
            // @formatter:on

            return new MessageAggregator().aggregate(flux, observationContext::setResponse);

        });
    }

    private MultiValueMap<String, String> getAdditionalHttpHeaders(Prompt prompt) {

        Map<String, String> headers = new HashMap<>(this.defaultOptions.getHttpHeaders());
        if (prompt.getOptions() != null && prompt.getOptions() instanceof OpenAiChatOptions chatOptions) {
            headers.putAll(chatOptions.getHttpHeaders());
        }
        return CollectionUtils.toMultiValueMap(
                headers.entrySet().stream().collect(Collectors.toMap(Map.Entry::getKey, e -> List.of(e.getValue()))));
    }

    private Generation buildGeneration(OpenAiApi.ChatCompletion.Choice choice, Map<String, Object> metadata, OpenAiApi.ChatCompletionRequest request) {
        List<AssistantMessage.ToolCall> toolCalls = choice.message().toolCalls() == null ? List.of()
                : choice.message()
                .toolCalls()
                .stream()
                .map(toolCall -> new AssistantMessage.ToolCall(toolCall.id(), "function",
                        toolCall.function().name(), toolCall.function().arguments()))
                .reduce((tc1, tc2) -> new AssistantMessage.ToolCall(tc1.id(), "function", tc1.name(), tc1.arguments() + tc2.arguments()))
                .stream()
                .toList();

        String finishReason = (choice.finishReason() != null ? choice.finishReason().name() : "");
        var generationMetadataBuilder = ChatGenerationMetadata.builder().finishReason(finishReason);

        List<Media> media = new ArrayList<>();
        String textContent = choice.message().content();
        var audioOutput = choice.message().audioOutput();
        if (audioOutput != null) {
            String mimeType = String.format("audio/%s", request.audioParameters().format().name().toLowerCase());
            byte[] audioData = Base64.getDecoder().decode(audioOutput.data());
            Resource resource = new ByteArrayResource(audioData);
            Media.builder().mimeType(MimeTypeUtils.parseMimeType(mimeType)).data(resource).id(audioOutput.id()).build();
            media.add(Media.builder()
                    .mimeType(MimeTypeUtils.parseMimeType(mimeType))
                    .data(resource)
                    .id(audioOutput.id())
                    .build());
            if (!StringUtils.hasText(textContent)) {
                textContent = audioOutput.transcript();
            }
            generationMetadataBuilder.metadata("audioId", audioOutput.id());
            generationMetadataBuilder.metadata("audioExpiresAt", audioOutput.expiresAt());
        }

        var assistantMessage = new AssistantMessage(textContent, metadata, toolCalls, media);
        return new Generation(assistantMessage, generationMetadataBuilder.build());
    }

    private ChatResponseMetadata from(OpenAiApi.ChatCompletion result, RateLimit rateLimit, Usage usage) {
        Assert.notNull(result, "OpenAI ChatCompletionResult must not be null");
        var builder = ChatResponseMetadata.builder()
                .id(result.id() != null ? result.id() : "")
                .usage(usage)
                .model(result.model() != null ? result.model() : "")
                .keyValue("created", result.created() != null ? result.created() : 0L)
                .keyValue("system-fingerprint", result.systemFingerprint() != null ? result.systemFingerprint() : "");
        if (rateLimit != null) {
            builder.rateLimit(rateLimit);
        }
        return builder.build();
    }

    private ChatResponseMetadata from(ChatResponseMetadata chatResponseMetadata, Usage usage) {
        Assert.notNull(chatResponseMetadata, "OpenAI ChatResponseMetadata must not be null");
        var builder = ChatResponseMetadata.builder()
                .id(chatResponseMetadata.getId() != null ? chatResponseMetadata.getId() : "")
                .usage(usage)
                .model(chatResponseMetadata.getModel() != null ? chatResponseMetadata.getModel() : "");
        if (chatResponseMetadata.getRateLimit() != null) {
            builder.rateLimit(chatResponseMetadata.getRateLimit());
        }
        return builder.build();
    }

    /**
     * Convert the ChatCompletionChunk into a ChatCompletion. The Usage is set to null.
     * @param chunk the ChatCompletionChunk to convert
     * @return the ChatCompletion
     */
    private OpenAiApi.ChatCompletion chunkToChatCompletion(OpenAiApi.ChatCompletionChunk chunk) {
        List<OpenAiApi.ChatCompletion.Choice> choices = chunk.choices()
                .stream()
                .map(chunkChoice -> new OpenAiApi.ChatCompletion.Choice(chunkChoice.finishReason(), chunkChoice.index(), chunkChoice.delta(),
                        chunkChoice.logprobs()))
                .toList();

        return new OpenAiApi.ChatCompletion(chunk.id(), choices, chunk.created(), chunk.model(), chunk.serviceTier(),
                chunk.systemFingerprint(), "chat.completion", chunk.usage());
    }

    private DefaultUsage getDefaultUsage(OpenAiApi.Usage usage) {
        return new DefaultUsage(usage.promptTokens(), usage.completionTokens(), usage.totalTokens(), usage);
    }

    Prompt buildRequestPrompt(Prompt prompt) {
        // Process runtime options
        OpenAiChatOptions runtimeOptions = null;
        if (prompt.getOptions() != null) {
            if (prompt.getOptions() instanceof ToolCallingChatOptions toolCallingChatOptions) {
                runtimeOptions = ModelOptionsUtils.copyToTarget(toolCallingChatOptions, ToolCallingChatOptions.class,
                        OpenAiChatOptions.class);
            }
            else if (prompt.getOptions() instanceof FunctionCallingOptions functionCallingOptions) {
                runtimeOptions = ModelOptionsUtils.copyToTarget(functionCallingOptions, FunctionCallingOptions.class,
                        OpenAiChatOptions.class);
            }
            else {
                runtimeOptions = ModelOptionsUtils.copyToTarget(prompt.getOptions(), ChatOptions.class,
                        OpenAiChatOptions.class);
            }
        }

        // Define request options by merging runtime options and default options
        OpenAiChatOptions requestOptions = ModelOptionsUtils.merge(runtimeOptions, this.defaultOptions,
                OpenAiChatOptions.class);

        // Merge @JsonIgnore-annotated options explicitly since they are ignored by
        // Jackson, used by ModelOptionsUtils.
        if (runtimeOptions != null) {
            requestOptions.setHttpHeaders(
                    mergeHttpHeaders(runtimeOptions.getHttpHeaders(), this.defaultOptions.getHttpHeaders()));
            requestOptions.setInternalToolExecutionEnabled(
                    ModelOptionsUtils.mergeOption(runtimeOptions.isInternalToolExecutionEnabled(),
                            this.defaultOptions.isInternalToolExecutionEnabled()));
            requestOptions.setToolNames(ToolCallingChatOptions.mergeToolNames(runtimeOptions.getToolNames(),
                    this.defaultOptions.getToolNames()));
            requestOptions.setToolCallbacks(ToolCallingChatOptions.mergeToolCallbacks(runtimeOptions.getToolCallbacks(),
                    this.defaultOptions.getToolCallbacks()));
            requestOptions.setToolContext(ToolCallingChatOptions.mergeToolContext(runtimeOptions.getToolContext(),
                    this.defaultOptions.getToolContext()));
        }
        else {
            requestOptions.setHttpHeaders(this.defaultOptions.getHttpHeaders());
            requestOptions.setInternalToolExecutionEnabled(this.defaultOptions.isInternalToolExecutionEnabled());
            requestOptions.setToolNames(this.defaultOptions.getToolNames());
            requestOptions.setToolCallbacks(this.defaultOptions.getToolCallbacks());
            requestOptions.setToolContext(this.defaultOptions.getToolContext());
        }

        ToolCallingChatOptions.validateToolCallbacks(requestOptions.getToolCallbacks());

        return new Prompt(prompt.getInstructions(), requestOptions);
    }

    private Map<String, String> mergeHttpHeaders(Map<String, String> runtimeHttpHeaders,
                                                 Map<String, String> defaultHttpHeaders) {
        var mergedHttpHeaders = new HashMap<>(defaultHttpHeaders);
        mergedHttpHeaders.putAll(runtimeHttpHeaders);
        return mergedHttpHeaders;
    }

    /**
     * Accessible for testing.
     */
    OpenAiApi.ChatCompletionRequest createRequest(Prompt prompt, boolean stream) {

        List<OpenAiApi.ChatCompletionMessage> chatCompletionMessages = prompt.getInstructions().stream().map(message -> {
            if (message.getMessageType() == MessageType.USER || message.getMessageType() == MessageType.SYSTEM) {
                Object content = message.getText();
                if (message instanceof UserMessage userMessage) {
                    if (!CollectionUtils.isEmpty(userMessage.getMedia())) {
                        List<OpenAiApi.ChatCompletionMessage.MediaContent> contentList = new ArrayList<>(List.of(new OpenAiApi.ChatCompletionMessage.MediaContent(message.getText())));

                        contentList.addAll(userMessage.getMedia().stream().map(this::mapToMediaContent).toList());

                        content = contentList;
                    }
                }

                return List.of(new OpenAiApi.ChatCompletionMessage(content,
                        OpenAiApi.ChatCompletionMessage.Role.valueOf(message.getMessageType().name())));
            }
            else if (message.getMessageType() == MessageType.ASSISTANT) {
                var assistantMessage = (AssistantMessage) message;
                List<OpenAiApi.ChatCompletionMessage.ToolCall> toolCalls = null;
                if (!CollectionUtils.isEmpty(assistantMessage.getToolCalls())) {
                    toolCalls = assistantMessage.getToolCalls().stream().map(toolCall -> {
                        var function = new OpenAiApi.ChatCompletionMessage.ChatCompletionFunction(toolCall.name(), toolCall.arguments());
                        return new OpenAiApi.ChatCompletionMessage.ToolCall(toolCall.id(), toolCall.type(), function);
                    }).toList();
                }
                OpenAiApi.ChatCompletionMessage.AudioOutput audioOutput = null;
                if (!CollectionUtils.isEmpty(assistantMessage.getMedia())) {
                    Assert.isTrue(assistantMessage.getMedia().size() == 1,
                            "Only one media content is supported for assistant messages");
                    audioOutput = new OpenAiApi.ChatCompletionMessage.AudioOutput(assistantMessage.getMedia().get(0).getId(), null, null, null);

                }
                return List.of(new OpenAiApi.ChatCompletionMessage(assistantMessage.getText(),
                        OpenAiApi.ChatCompletionMessage.Role.ASSISTANT, null, null, toolCalls, null, audioOutput));
            }
            else if (message.getMessageType() == MessageType.TOOL) {
                ToolResponseMessage toolMessage = (ToolResponseMessage) message;

                toolMessage.getResponses()
                        .forEach(response -> Assert.isTrue(response.id() != null, "ToolResponseMessage must have an id"));
                return toolMessage.getResponses()
                        .stream()
                        .map(tr -> new OpenAiApi.ChatCompletionMessage(tr.responseData(), OpenAiApi.ChatCompletionMessage.Role.TOOL, tr.name(),
                                tr.id(), null, null, null))
                        .toList();
            }
            else {
                throw new IllegalArgumentException("Unsupported message type: " + message.getMessageType());
            }
        }).flatMap(List::stream).toList();

        OpenAiApi.ChatCompletionRequest request = new OpenAiApi.ChatCompletionRequest(chatCompletionMessages, stream);

        OpenAiChatOptions requestOptions = (OpenAiChatOptions) prompt.getOptions();
        request = ModelOptionsUtils.merge(requestOptions, request, OpenAiApi.ChatCompletionRequest.class);

        // Add the tool definitions to the request's tools parameter.
        List<ToolDefinition> toolDefinitions = this.toolCallingManager.resolveToolDefinitions(requestOptions);
        if (!CollectionUtils.isEmpty(toolDefinitions)) {
            request = ModelOptionsUtils.merge(
                    OpenAiChatOptions.builder().tools(this.getFunctionTools(toolDefinitions)).build(), request,
                    OpenAiApi.ChatCompletionRequest.class);
        }

        // Remove `streamOptions` from the request if it is not a streaming request
        if (request.streamOptions() != null && !stream) {
            logger.warn("Removing streamOptions from the request as it is not a streaming request!");
            request = request.streamOptions(null);
        }

        return request;
    }

    private OpenAiApi.ChatCompletionMessage.MediaContent mapToMediaContent(Media media) {
        var mimeType = media.getMimeType();
        if (MimeTypeUtils.parseMimeType("audio/mp3").equals(mimeType) || MimeTypeUtils.parseMimeType("audio/mpeg").equals(mimeType)) {
            return new OpenAiApi.ChatCompletionMessage.MediaContent(
                    new OpenAiApi.ChatCompletionMessage.MediaContent.InputAudio(fromAudioData(media.getData()), OpenAiApi.ChatCompletionMessage.MediaContent.InputAudio.Format.MP3));
        }
        if (MimeTypeUtils.parseMimeType("audio/wav").equals(mimeType)) {
            return new OpenAiApi.ChatCompletionMessage.MediaContent(
                    new OpenAiApi.ChatCompletionMessage.MediaContent.InputAudio(fromAudioData(media.getData()), OpenAiApi.ChatCompletionMessage.MediaContent.InputAudio.Format.WAV));
        }
        else {
            return new OpenAiApi.ChatCompletionMessage.MediaContent(
                    new OpenAiApi.ChatCompletionMessage.MediaContent.ImageUrl(this.fromMediaData(media.getMimeType(), media.getData())));
        }
    }

    private String fromAudioData(Object audioData) {
        if (audioData instanceof byte[] bytes) {
            return String.format("data:;base64,%s", Base64.getEncoder().encodeToString(bytes));
        }
        throw new IllegalArgumentException("Unsupported audio data type: " + audioData.getClass().getSimpleName());
    }

    private String fromMediaData(MimeType mimeType, Object mediaContentData) {
        if (mediaContentData instanceof byte[] bytes) {
            // Assume the bytes are an image. So, convert the bytes to a base64 encoded
            // following the prefix pattern.
            return String.format("data:%s;base64,%s", mimeType.toString(), Base64.getEncoder().encodeToString(bytes));
        }
        else if (mediaContentData instanceof String text) {
            // Assume the text is a URLs or a base64 encoded image prefixed by the user.
            return text;
        }
        else {
            throw new IllegalArgumentException(
                    "Unsupported media data type: " + mediaContentData.getClass().getSimpleName());
        }
    }

    private List<OpenAiApi.FunctionTool> getFunctionTools(List<ToolDefinition> toolDefinitions) {
        return toolDefinitions.stream().map(toolDefinition -> {
            var function = new OpenAiApi.FunctionTool.Function(toolDefinition.description(), toolDefinition.name(),
                    toolDefinition.inputSchema());
            return new OpenAiApi.FunctionTool(function);
        }).toList();
    }

    @Override
    public ChatOptions getDefaultOptions() {
        return OpenAiChatOptions.fromOptions(this.defaultOptions);
    }

    @Override
    public String toString() {
        return "AlibabaOpenAiChatModel [defaultOptions=" + this.defaultOptions + "]";
    }

    /**
     * Use the provided convention for reporting observation data
     * @param observationConvention The provided convention
     */
    public void setObservationConvention(ChatModelObservationConvention observationConvention) {
        Assert.notNull(observationConvention, "observationConvention cannot be null");
        this.observationConvention = observationConvention;
    }

    public static Builder builder() {
        return new Builder();
    }

    public static final class Builder {

        private OpenAiApi openAiApi;

        private OpenAiChatOptions defaultOptions = OpenAiChatOptions.builder()
                .model(OpenAiApi.DEFAULT_CHAT_MODEL)
                .temperature(0.7)
                .build();

        private ToolCallingManager toolCallingManager;

        private FunctionCallbackResolver functionCallbackResolver;

        private List<FunctionCallback> toolFunctionCallbacks;

        private RetryTemplate retryTemplate = RetryUtils.DEFAULT_RETRY_TEMPLATE;

        private ObservationRegistry observationRegistry = ObservationRegistry.NOOP;

        private Builder() {
        }

        public Builder openAiApi(OpenAiApi openAiApi) {
            this.openAiApi = openAiApi;
            return this;
        }

        public Builder defaultOptions(OpenAiChatOptions defaultOptions) {
            this.defaultOptions = defaultOptions;
            return this;
        }

        public Builder toolCallingManager(ToolCallingManager toolCallingManager) {
            this.toolCallingManager = toolCallingManager;
            return this;
        }

        @Deprecated
        public Builder functionCallbackResolver(FunctionCallbackResolver functionCallbackResolver) {
            this.functionCallbackResolver = functionCallbackResolver;
            return this;
        }

        @Deprecated
        public Builder toolFunctionCallbacks(List<FunctionCallback> toolFunctionCallbacks) {
            this.toolFunctionCallbacks = toolFunctionCallbacks;
            return this;
        }

        public Builder retryTemplate(RetryTemplate retryTemplate) {
            this.retryTemplate = retryTemplate;
            return this;
        }

        public Builder observationRegistry(ObservationRegistry observationRegistry) {
            this.observationRegistry = observationRegistry;
            return this;
        }

        public AlibabaOpenAiChatModel build() {
            if (toolCallingManager != null) {
                Assert.isNull(functionCallbackResolver,
                        "functionCallbackResolver cannot be set when toolCallingManager is set");
                Assert.isNull(toolFunctionCallbacks,
                        "toolFunctionCallbacks cannot be set when toolCallingManager is set");

                return new AlibabaOpenAiChatModel(openAiApi, defaultOptions, toolCallingManager, retryTemplate,
                        observationRegistry);
            }

            if (functionCallbackResolver != null) {
                Assert.isNull(toolCallingManager,
                        "toolCallingManager cannot be set when functionCallbackResolver is set");
                List<FunctionCallback> toolCallbacks = this.toolFunctionCallbacks != null ? this.toolFunctionCallbacks
                        : List.of();

                return new AlibabaOpenAiChatModel(openAiApi, defaultOptions, functionCallbackResolver, toolCallbacks,
                        retryTemplate, observationRegistry);
            }

            return new AlibabaOpenAiChatModel(openAiApi, defaultOptions, DEFAULT_TOOL_CALLING_MANAGER, retryTemplate,
                    observationRegistry);
        }

    }

}


Bean配置注册

将自定义的模型注册为Spring Bean:

@Bean
public AlibabaOpenAiChatModel alibabaOpenAiChatModel(
        OpenAiConnectionProperties commonProperties,
        OpenAiChatProperties chatProperties,
        ObjectProvider<RestClient.Builder> restClientBuilderProvider,
        ObjectProvider<WebClient.Builder> webClientBuilderProvider,
        ToolCallingManager toolCallingManager, 
        RetryTemplate retryTemplate,
        ResponseErrorHandler responseErrorHandler,
        ObjectProvider<ObservationRegistry> observationRegistry,
        ObjectProvider<ChatModelObservationConvention> observationConvention) {
    
    // 配置基础参数
    String baseUrl = StringUtils.hasText(chatProperties.getBaseUrl()) ? 
        chatProperties.getBaseUrl() : commonProperties.getBaseUrl();
    String apiKey = StringUtils.hasText(chatProperties.getApiKey()) ? 
        chatProperties.getApiKey() : commonProperties.getApiKey();
    String projectId = StringUtils.hasText(chatProperties.getProjectId()) ? 
        chatProperties.getProjectId() : commonProperties.getProjectId();
    String organizationId = StringUtils.hasText(chatProperties.getOrganizationId()) ? 
        chatProperties.getOrganizationId() : commonProperties.getOrganizationId();
    
    // 构建连接头信息
    Map<String, List<String>> connectionHeaders = new HashMap<>();
    if (StringUtils.hasText(projectId)) {
        connectionHeaders.put("OpenAI-Project", List.of(projectId));
    }
    if (StringUtils.hasText(organizationId)) {
        connectionHeaders.put("OpenAI-Organization", List.of(organizationId));
    }
    
    // 获取HTTP客户端构建器
    RestClient.Builder restClientBuilder = 
        restClientBuilderProvider.getIfAvailable(RestClient::builder);
    WebClient.Builder webClientBuilder = 
        webClientBuilderProvider.getIfAvailable(WebClient::builder);
    
    // 构建OpenAI API客户端
    OpenAiApi openAiApi = OpenAiApi.builder()
        .baseUrl(baseUrl)
        .apiKey(new SimpleApiKey(apiKey))
        .headers(CollectionUtils.toMultiValueMap(connectionHeaders))
        .completionsPath(chatProperties.getCompletionsPath())
        .embeddingsPath("/v1/embeddings")
        .restClientBuilder(restClientBuilder)
        .webClientBuilder(webClientBuilder)
        .responseErrorHandler(responseErrorHandler)
        .build();
    
    // 构建自定义聊天模型
    AlibabaOpenAiChatModel chatModel = AlibabaOpenAiChatModel.builder()
        .openAiApi(openAiApi)
        .defaultOptions(chatProperties.getOptions())
        .toolCallingManager(toolCallingManager)
        .retryTemplate(retryTemplate)
        .observationRegistry(observationRegistry.getIfUnique(() -> ObservationRegistry.NOOP))
        .build();
    
    // 设置观察约定
    observationConvention.ifAvailable(chatModel::setObservationConvention);
    
    return chatModel;
}

技术原理深度解析

为什么会出现分片问题?

  1. 流式传输机制:阿里云百炼平台在处理Function Calling时,采用了流式传输方式
  2. 协议差异:虽然声称兼容OpenAI,但在具体实现上存在细微差别
  3. 数据序列化方式:不同平台对JSON数据的分块策略不同

解决方案的技术要点

  1. Stream API的妙用:利用Java 8的Stream API进行数据聚合
  2. reduce操作:将多个分片ToolCall合并为单个完整对象
  3. 空值处理:妥善处理分片中的null和空字符串
  4. Bean替换:通过Spring的依赖注入机制替换默认实现

总结

本文详细分析了SpringAI与阿里云百炼平台在Function Calling功能上的兼容性问题,并提供了完整的解决方案。通过自定义兼容层的方式,我们成功解决了参数分片问题,保持了响应式编程的优势,同时确保了系统的稳定性和用户体验。

这个案例提醒我们,在选择和集成第三方服务时,不能仅仅依赖于"兼容性声明",而应该通过实际测试来验证兼容性,并准备相应的适配方案。

扩展阅读


如果您在实施过程中遇到问题,欢迎在评论区讨论交流,对您有帮助,点赞收藏支持一下

本文章已经生成可运行项目
### 函数调用的作用及解决的问题 #### 作用 函数调用在编程中具有重要作用,它不仅简化了代码结构,还提高了开发效率和维护便利性。以下是其主要作用: 1. **模块化设计** 函数调用通过将复杂问题分解为多个独立的小功能单元实现模块化设计。这种设计方式使得程序更易于理解和管理[^1]。 2. **代码重用** 创建一次函数后可以在不同地方多次调用,从而减少重复编写相同逻辑的需求,提高代码的可重用性和一致性。 3. **增强可读性与维护性** 将特定的功能封装到单独的函数中可以使主程序更加简洁明了,便于后续修改或扩展[^2]。 4. **促进协作开发** 在团队项目中,不同的开发者可以专注于各自负责的部分(即各自的函数),最后通过统一接口集成起来,极大地提升了合作效率。 5. **抽象能力提升** 函数允许隐藏具体实现细节而只暴露必要的输入输出关系给使用者,这有助于构建更高层次的应用程序[^3]。 #### 解决的问题 利用上述特性,函数调用能够有效应对并缓解如下常见挑战: - **冗余编码现象**:当同一段操作需反复执行时,如果每次都手动复制粘贴相应语句,则既浪费时间又容易引入错误;借助于定义好的函数即可轻松规避此类麻烦。 - **调试困难度增加**:对于规模较大的软件工程而言,缺乏清晰条理性的源码会让定位缺陷变得异常棘手——合理运用函数划分边界条件以及核心算法部分则能显著降低这一难度级别。 - **性能优化瓶颈**:某些情况下可能需要针对特殊场景定制高效解决方案而非通用版本,在不影响其余组件正常运作的前提下局部调整成为可行策略之一。 - **跨平台兼容难题**:考虑到操作系统差异等因素影响下底层资源访问机制存在区别之处,采用标准化形式包裹这些变动要素进而达成一致表现效果显得尤为重要。 ```c // 示例 C 语言中的简单函数定义及其调用方法展示如何解决问题 #include <stdio.h> void greet() { printf("Hello, world!\n"); } int add(int a, int b) { return a + b; } int main(){ // 调用无参函数greet() greet(); // 调用带两个整型参数返回它们之和的add函数 int result = add(5,7); printf("%d\n",result); return 0; } ```
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值