《深度学习》—— ResNet 残差神经网络

一、什么是ResNet?

  • ResNet 网络是在 2015年 由微软实验室中的何凯明等几位大神提出,斩获当年ImageNet竞赛中分类任务第一名,目标检测第一名。获得COCO数据集中目标检测第一名,图像分割第一名。

  • ResNet 网络中的两个核心组成部分

    • 残差结构(Residual Structure)
    • Batch Normalization(批归一化)
  • 为什么要提出残差结构?

    • 在ResNet 网络没有提出来之前,所有的神经网络都是通过卷积层和池化层的叠加组成的。

    • 很多人认为卷积层和池化层的层数越多,模型的效果会越好

    • 在实际的试验中发现,随着卷积层和池化层的叠加,学习效果不会逐渐变好,反而出现2个问题:

      1.梯度消失和梯度爆炸
      梯度消失:若每一层的误差梯度小于1,反向传播时,网络越深,梯度越趋近于0
      梯度爆炸:若每一层的误差梯度大于1,反向传播时,网络越深,梯度越来越大

      2.退化问题
      随着层数的增加,预测效果反而越来越差, 下面是何凯明他们论文中实验的可视化

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值