params_count(model),model是nn.Module类型的,计算参数的数量。
SparseTensor:
rom torch_sparse import SparseTensor
adj = SparseTensor(row=edge_index[0], col=edge_index[1], value=...,
sparse_sizes=(num_nodes, num_nodes))
# value is optional and can be None
# Obtain different representations (COO, CSR, CSC):
row, col, value = adj.coo()
rowptr, col, value = adj.csr()
colptr, row, value = adj.csc()
adj = adj[:100, :100] # Slicing, indexing and masking support
adj = adj.set_diag() # Add diagonal entries
adj_t = adj.t() # Transpose
out = adj.matmul(x) # Sparse-dense matrix multiplication
adj = adj.matmul(adj) # Sparse-sparse matrix multiplication
# Creating SparseTensor instances:
adj = SparseTensor.from_dense(mat)
adj = SparseTensor.eye(100, 100)
adj = SparseTensor.from_scipy(mat)
支持sparse-sparse,sparse-dense矩阵乘法。
在消息传递的时候