
感知
文章平均质量分 92
64318@461
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
DeepLab系列
引言DeepLab系列在语义分割领域是比较经典的模型,整个系统从v1演进到v3+,可以看到作者在各个版本间使用的改进技术,从中可以看到在语义分割领域各个子问题是如何改进&模型的技术演进思路。DeepLabV1–SEMANTIC IMAGE SEGMENTATION WITH DEEP CONVOLUTIONAL NETS AND FULLY CONNECTED CRFS (2015)问题&解决思路There are two technical hurdles in the app原创 2022-02-20 18:42:19 · 2127 阅读 · 0 评论 -
EffificientDet: Scalable and Effificient Object Detection
动机:Is it possible to build a scalable detection architecture with both higher accuracy and better efficiency across a wide spectrum of resource constraints (e.g., from 3B to 300B FLOPs)?【CC】开门见山:基于不同的算力构建一族网络We systematically study neural network archit原创 2022-02-02 14:52:04 · 1696 阅读 · 0 评论 -
SMOKE: Single-Stage Monocular 3D Object Detection via Keypoint Estimation
动机:in this paper that predicts a 3D bounding box for each detected object by combining a single keypoint estimate with regressed 3D variables. As a second contribution, we propose a multi-step disentangling approach for constructing the 3D bounding box, w原创 2022-01-16 19:29:20 · 2598 阅读 · 0 评论 -
NetVLAD: CNN architecture for weakly supervised place recognition
背景知识:Vector of Locally Aggregated Descriptors(VLAD)image retrieval.【CC】是广泛使用的图像提取方式,本文是在在这个提取器上做改进;具体是啥下面有介绍weakly supervised ranking loss【CC】本文的另外一个创新点是弱监督的LOSS设计,后面有介绍Place recongnition as an instance retrieval task:the query image location is estim原创 2021-12-26 19:12:14 · 1120 阅读 · 1 评论 -
3D-LaneNet+: Anchor Free Lane Detection using a Semi-Local Representation
动机:对3D-LaneNet的改进; 特点 semi-local tile representation: breaks down lanes into simple lane segments whose parameters can be learnt【CC】网格化,基于每个网格去学习Lane的特征;最后再通过NN合起来;这样天然就是Anchorfree的,并且支持不规则的/没有封闭的曲线技术点:3D-LaneNet: The first is a CNN architecture wi原创 2021-11-07 13:19:37 · 995 阅读 · 0 评论 -
IntentNet: Learning to Predict Intention from Raw Sensor Data
动机In this paper we develop a one-stage detector and forecaster that exploits both 3D point clouds produced by a LiDAR sensor as well as dynamic maps of the environment.we exploit 3D LiDAR point clouds and dynamic HD maps containing semantic elements such原创 2021-10-24 18:36:52 · 749 阅读 · 0 评论 -
Real Time End-to-End 3D Detection, Tracking and Motion Forecasting with a Single Convolutional Net
动机本文通过一个不深的网络搞定了3D的目标检测/跟踪/预测。采用BEV的方式进行表达。猜测本文是MP3论文关于Perception部分的原型。输入:4D张量(X,Y,Z,T)输出:备忘This can result in catastrophic failures as downstream processes cannot recover from errors that appear at the beginning of the pipeline– 级联方式下后端处理模块无法修正千点模原创 2021-09-25 21:24:30 · 269 阅读 · 0 评论 -
经典论文--FCN
文章来源:文章意义&解决的问题:相关概念:文章创新点:网络结构:原创 2021-06-28 10:06:19 · 783 阅读 · 0 评论