实验目的
掌握词典编码的基本原理,用C/C++/Python等语言编程实现LZW解码器并分析编解码算
法。
方法解释
算法说明
所用功能代码
词典树数组结构体
struct {
int suffix;//后缀
int parent;//母节点
int firstchild;//第一子节点
int nextsibling;//下一个相邻同级节点
} dictionary[MAX_CODE + 1];
词典初始化
void InitDictionary(void) {
int i;
for (i = 0; i < 256; i++) {
dictionary[i].suffix = i;
dictionary[i].parent = -1;
dictionary[i].firstchild = -1;
dictionary[i].nextsibling = i + 1;
}
dictionary[255].nextsibling = -1;
next_code = 256;
}
词典添加字符
void AddToDictionary(int character, int string_code) {
int firstsibling, nextsibling;
if (0 > string_code) return;
dictionary[next_code].suffix = character;
dictionary[next_code].parent = string_code;
dictionary[next_code].nextsibling = -1;
dictionary[next_code].firstchild = -1;
firstsibling = dictionary[string_code].firstchild;
if (-1 < firstsibling) { // the parent has child
nextsibling = firstsibling;
while (-1 < dictionary[nextsibling].nextsibling)
nextsibling = dictionary[nextsibling].nextsibling;
dictionary[nextsibling].nextsibling = next_code;
}
else {// no child before, modify it to be the first
dictionary[string_code].firstchild = next_code;
}
next_code++;
}
LZW编码原理和实现算法
原理
LZW的编码思想是不断地从字符流中提取新的字符串,通俗地理解为新“词条”,然后用“代号”也就是码字表示这个“词条”。这样一来,对字符流的编码就变成了用码字去替换字符流,生成码字流,从而达到压缩数据的目的。LZW编码是围绕称为词典的转换表来完成的。LZW编码器通过管理这个词典完成输入与输出之间的转换。LZW编码器的输入是字符流,字符流可以是用8位ASCII字符组成的字符串,而输出是用n位(例如12位)表示的码字流。LZW编码算法的步骤如下:
步骤1:将词典初始化为包含所有可能的单字符,当前前缀P初始化为空。
步骤2:当前字符C=字符流中的下一个字符。
步骤3:判断P+C是否在词典中
(1)如果“是”,则用C扩展P,即让P=P+C,返回到步骤2。
(2)如果“否”,则
输出与当前前缀P相对应的码字W;
将P+C添加到词典中;
令P=C,并返回到步骤2
代码实现
LZW编码
void LZWEncode(FILE* fp, BITFILE* bf) {
int character;
int string_code;
int index;
unsigned long file_length;
fseek(fp, 0, SEEK_END);
file_length = ftell(fp);
fseek(fp, 0, SEEK_SET);
BitsOutput(bf, file_length, 4 * 8);//打开二进制编码流文件
InitDictionary();
string_code = -1;
while (EOF != (character = fgetc(fp))) {
index = InDictionary (character, string_code);
if (0 <= index) { // string+character in dictionary
string_code = index;
}
else { // string+character not in dictionary
output(bf, string_code);//输出二进制编码流文件
if (MAX_CODE > next_code) { // free space in dictionary
// add string+character to dictionary
AddToDictionary(character, string_code);
}
string_code = character;
}
}
output(bf, string_code);
}
LZW解码原理和实现算法
原理
LZW解码算法开始时,译码词典和编码词典相同,包含所有可能的前缀根。具体解码算法如下:
步骤1:在开始译码时词典包含所有可能的前缀根。
步骤2:令CW:=码字流中的第一个码字。
步骤3:输出当前缀-符串string.CW到码字流。
步骤4:先前码字PW:=当前码字CW。
步骤5:当前码字CW:=码字流的下一个码字。
步骤6:判断当前缀-符串string.CW 是否在词典中。
(1)如果”是”,则
把当前缀-符串string.CW输出到字符流。
当前前缀P:=先前缀-符串string.PW。
当前字符C:=当前前缀-符串string.CW的第一个字符。
把缀-符串P+C添加到词典。
(2)如果”否”,则
当前前缀P:=先前缀-符串string.PW。
当前字符C:=当前缀-符串string.CW的第一个字符。
输出缀-符串P+C到字符流,然后把它添加到词典中。
步骤7:判断码字流中是否还有码字要译。
(1)如果”是”,就返回步骤4。
(2)如果”否”,结束。
重要问题
对原理步骤6:(2)的解释
解码时,出现词典中无法查询到该字符,是由于在编码时,新的“P+C”刚被创建,下一个“P”就需要使用它造成的,新创建的“P+C”的尾缀是新创建的“P+C”的首字符“
代码实现
void LZWDecode(BITFILE* bf, FILE* fp) {
int character;
int new_code, last_code;
int phrase_length;
unsigned long file_length;
file_length = BitsInput(bf, 4 * 8);//获取二进制编码流长度
if (-1 == file_length) file_length = 0;
/*需填充*/
InitDictionary();
last_code = -1;
while (0 < file_length) {
new_code = input(bf);//从二进制码流获取一个字符编码
if (new_code >= next_code)
//this is the case CSCSC(not in dict)
{
d_stack[0] = character;
phrase_length = DecodeString(1, last_code);//返还1
}
else
{
phrase_length = DecodeString(0, new_code);//通过查询词典解码
}
character = d_stack[phrase_length - 1];
while (0 < phrase_length) {
phrase_length--;
fputc(d_stack[phrase_length], fp);
file_length--;
}
if (MAX_CODE > next_code) { // add the new phrase to dictionary
AddToDictionary(character, last_code);
}
last_code = new_code;
}
}
实验结果
调试LZW编解码程序

设置项目参数 进行编码

编码生成文件

设置项目参数 解码

解码生成文件,与原文件一致


选择至少十种不同格式类型的文件,使用LZW编码器进行压缩

| 文件类型 | 原始文件大小 | LZW编码压缩后大小 | 压缩比 |
|---|---|---|---|
| docx | 620,942 | 771,188 | 124.2% |
| bmp | 3,030 | 980 | 32.3% |
| rgb | 196,608 | 183,272 | 93.2% |
| yuv | 98,304 | 69,634 | 70.8% |
| 211,722 | 271,978 | 128.4% | |
| jpg | 170,416 | 197,340 | 115.8% |
| txt | 3,946 | 2,144 | 54.3% |
| png | 55,238 | 82,704 | 149.7% |
| eddx | 33,477 | 54,948 | 164.1% |
| zip | 505,449 | 640,588 | 126.7% |
由表格可知,LZW压缩频繁出现压缩或文件变得更大的情况,猜测是该代码程序的局限性所致。所以个人认为,这些压缩比并不准确。
完整代码
bitio.h头文件
bitio.c定义码流输入输出函数
/*
* Definitions for bitwise IO
*
* vim: ts=4 sw=4 cindent
*/
#include <stdlib.h>
#include <stdio.h>
#include "bitio.h"
BITFILE* OpenBitFileInput(char* filename) {
BITFILE* bf;
bf = (BITFILE*)malloc(sizeof(BITFILE));
if (NULL == bf) return NULL;
if (NULL == filename) bf->fp = stdin;
else bf->fp = fopen(filename, "rb");
if (NULL == bf->fp) return NULL;
bf->mask = 0x80;
bf->rack = 0;
return bf;
}
BITFILE* OpenBitFileOutput(char* filename) {
BITFILE* bf;
bf = (BITFILE*)malloc(sizeof(BITFILE));
if (NULL == bf) return NULL;
if (NULL == filename) bf->fp = stdout;
else bf->fp = fopen(filename, "wb");
if (NULL == bf->fp) return NULL;
bf->mask = 0x80;
bf->rack = 0;
return bf;
}
void CloseBitFileInput(BITFILE* bf) {
fclose(bf->fp);
free(bf);
}
void CloseBitFileOutput(BITFILE* bf) {
// Output the remaining bits
if (0x80 != bf->mask) fputc(bf->rack, bf->fp);
fclose(bf->fp);
free(bf);
}
int BitInput(BITFILE* bf) {
int value;
if (0x80 == bf->mask) {
bf->rack = fgetc(bf->fp);
if (EOF == bf->rack) {
fprintf(stderr, "Read after the end of file reached\n");
exit(-1);
}
}
value = bf->mask & bf->rack;
bf->mask >>= 1;
if (0 == bf->mask) bf->mask = 0x80;
return((0 == value) ? 0 : 1);
}
unsigned long BitsInput(BITFILE* bf, int count) {
unsigned long mask;
unsigned long value;
mask = 1L << (count - 1);
value = 0L;
while (0 != mask) {
if (1 == BitInput(bf))
value |= mask;
mask >>= 1;
}
return value;
}
void BitOutput(BITFILE* bf, int bit) {
if (0 != bit) bf->rack |= bf->mask;
bf->mask >>= 1;
if (0 == bf->mask) { // eight bits in rack
fputc(bf->rack, bf->fp);
bf->rack = 0;
bf->mask = 0x80;
}
}
void BitsOutput(BITFILE* bf, unsigned long code, int count) {
unsigned long mask;
mask = 1L << (count - 1);
while (0 != mask) {
BitOutput(bf, (int)(0 == (code & mask) ? 0 : 1));
mask >>= 1;
}
}
lzw_E.c 定义编解码函数、main函数所在
/*
* Definition for LZW coding
*
* vim: ts=4 sw=4 cindent nowrap
*/
#include <stdlib.h>
#include <stdio.h>
#include "bitio.h"
#define MAX_CODE 65535
struct {
int suffix;
int parent, firstchild, nextsibling;
} dictionary[MAX_CODE + 1];
int next_code;
int d_stack[MAX_CODE]; // stack for decoding a phrase
#define input(f) ((int)BitsInput( f, 16))
#define output(f, x) BitsOutput( f, (unsigned long)(x), 16)
int DecodeString(int start, int code);
void InitDictionary(void);
void PrintDictionary(void) {
int n;
int count;
for (n = 256; n < next_code; n++) {
count = DecodeString(0, n);
printf("%4d->", n);
while (0 < count--) printf("%c", (char)(d_stack[count]));
printf("\n");
}
}
int DecodeString(int start, int code) {
int count;
count = start;
while (0 <= code) {
d_stack[count] = dictionary[code].suffix;
code = dictionary[code].parent;
count++;
}
return count;
}
void InitDictionary(void) {
int i;
for (i = 0; i < 256; i++) {
dictionary[i].suffix = i;
dictionary[i].parent = -1;
dictionary[i].firstchild = -1;
dictionary[i].nextsibling = i + 1;
}
dictionary[255].nextsibling = -1;
next_code = 256;
}
/*
* Input: string represented by string_code in dictionary,
* Output: the index of character+string in the dictionary
* index = -1 if not found
*/
int InDictionary(int character, int string_code) {
int sibling;
if (0 > string_code) return character;
sibling = dictionary[string_code].firstchild;
while (-1 < sibling) {
if (character == dictionary[sibling].suffix) return sibling;
sibling = dictionary[sibling].nextsibling;
}
return -1;
}
void AddToDictionary(int character, int string_code) {
int firstsibling, nextsibling;
if (0 > string_code) return;
dictionary[next_code].suffix = character;
dictionary[next_code].parent = string_code;
dictionary[next_code].nextsibling = -1;
dictionary[next_code].firstchild = -1;
firstsibling = dictionary[string_code].firstchild;
if (-1 < firstsibling) { // the parent has child
nextsibling = firstsibling;
while (-1 < dictionary[nextsibling].nextsibling)
nextsibling = dictionary[nextsibling].nextsibling;
dictionary[nextsibling].nextsibling = next_code;
}
else {// no child before, modify it to be the first
dictionary[string_code].firstchild = next_code;
}
next_code++;
}
void LZWEncode(FILE* fp, BITFILE* bf) {
int character;
int string_code;
int index;
unsigned long file_length;
fseek(fp, 0, SEEK_END);
file_length = ftell(fp);
fseek(fp, 0, SEEK_SET);
BitsOutput(bf, file_length, 4 * 8);
InitDictionary();
string_code = -1;
while (EOF != (character = fgetc(fp))) {
index = InDictionary (character, string_code);
if (0 <= index) { // string+character in dictionary
string_code = index;
}
else { // string+character not in dictionary
output(bf, string_code);
if (MAX_CODE > next_code) { // free space in dictionary
// add string+character to dictionary
AddToDictionary(character, string_code);
}
string_code = character;
}
}
output(bf, string_code);
}
void LZWDecode(BITFILE* bf, FILE* fp) {
int character;
int new_code, last_code;
int phrase_length;
unsigned long file_length;
file_length = BitsInput(bf, 4 * 8);
if (-1 == file_length) file_length = 0;
/*需填充*/
InitDictionary();
last_code = -1;
while (0 < file_length) {
new_code = input(bf);
if (new_code >= next_code)
//this is the case CSCSC(not in dict)
{
d_stack[0] = character;
phrase_length = DecodeString(1, last_code);
}
else
{
phrase_length = DecodeString(0, new_code);//
}
character = d_stack[phrase_length - 1];
while (0 < phrase_length) {
phrase_length--;
fputc(d_stack[phrase_length], fp);
file_length--;
}
if (MAX_CODE > next_code) { // add the new phrase to dictionary
AddToDictionary(character, last_code);
}
last_code = new_code;
}
}
int main(int argc, char** argv) {
FILE* fp;
BITFILE* bf;
if (4 > argc) {
fprintf(stdout, "usage: \n%s <o> <ifile> <ofile>\n", argv[0]);
fprintf(stdout, "\t<o>: E or D reffers encode or decode\n");
fprintf(stdout, "\t<ifile>: input file name\n");
fprintf(stdout, "\t<ofile>: output file name\n");
return -1;
}
if ('E' == argv[1][0]) { // do encoding
fp = fopen(argv[2], "rb");
bf = OpenBitFileOutput(argv[3]);
if (NULL != fp && NULL != bf) {
LZWEncode(fp, bf);
fclose(fp);
CloseBitFileOutput(bf);
fprintf(stdout, "encoding done\n");
}
}
else if ('D' == argv[1][0]) { // do decoding
bf = OpenBitFileInput(argv[2]);
fp = fopen(argv[3], "wb");
if (NULL != fp && NULL != bf) {
LZWDecode(bf, fp);
fclose(fp);
CloseBitFileInput(bf);
fprintf(stdout, "decoding done\n");
}
}
else { // otherwise
fprintf(stderr, "not supported operation\n");
}
return 0;
}
本文介绍LZW压缩算法原理及其实现过程,包括编码与解码的步骤,并提供C语言编写的完整源代码示例。通过对多种文件类型的压缩实验,探讨了LZW算法的实际效果。
3687

被折叠的 条评论
为什么被折叠?



