前言
本文将从RNN解决了什么问题、RNN的基本原理、RNN的优化算法、RNN的应用场景四个方面,带您一文搞懂循环神经网络RNN。
一、RNN解决了什么问题
传统神经网络算法存在局限:
-
输入输出一一对应: 传统神经网络算法通常是一个输入对应一个输出,这种严格的对应关系限制了其在处理复杂任务时的灵活性。
-
输入之间的独立性: 在传统神经网络算法中,不同的输入之间被视为相互独立的,没有考虑到它们之间的关联性。
RNN解决问题:
-
序列数据处理:RNN能够处理多个输入对应多个输出的情况,尤其适用于序列数据,如时间序列、语音或文本,其中每个输出与当前的及之前的输入都有关。
-
循环连接:RNN中的循环连接使得网络能够捕捉输入之间的关联性,从而利用先前的输入信息来影响后续的输出。
二、RNN的基本原理
构成部分:
-
输入层:接收输入数据,并将其传递给隐藏层。输入不仅仅是静态的,还包含着序列中的历史信息。
-
隐藏层:核心部分,捕捉时序依赖性。隐藏层的输出不仅取决于当前的输入,还取决于前一时刻的隐藏状态。
-
输出层:根据隐藏层的输出生成最终的预测结果。