Transformer动画讲解 - 多层感知机

前言

从端到端的角度来看,数据在Transformer中的流转可以概括为四个阶段:Embedding(嵌入)、Attention(注意力机制)、MLPs(多层感知机)和Unembedding(从模型表示到最终输出)。
在这里插入图片描述

下面对第三个阶段MLPs(多层感知机或前馈网络)进行详细介绍:

MLPs(多层感知机)在Transformer中的位置:
  • Transformer的编码器和解码器结构:
    (1)Transformer的编码器由多个相同的层堆叠而成,每个层包含两个主要的子层:一个多头自注意力(Multi-Head Self-Attention)机制和一个全连接的前馈神经网络(MLP)。
    (2)Transformer的解码器也由多个相同的层堆叠而成,但每个层包含三个主要的子层:一个Masked Multi-Head Self-Attention机制(用于编码器的输出),一个Multi-Head Encoder-Decoder Attention机制(用于结合编码器的输出和解码器的当前位置信息),以及一个全连接的前馈神经网络(MLP)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值