leetcode--3. 无重复字符的最长子串(python)

给定一个字符串 s ,请你找出其中不含有重复字符的 最长子串 的长度。

示例 1:

输入: s = “abcabcbb”
输出: 3
解释: 因为无重复字符的最长子串是 “abc”,所以其长度为 3。
示例 2:

输入: s = “bbbbb”
输出: 1
解释: 因为无重复字符的最长子串是 “b”,所以其长度为 1。
示例 3:

输入: s = “pwwkew”
输出: 3
解释: 因为无重复字符的最长子串是 “wke”,所以其长度为 3。
请注意,你的答案必须是 子串 的长度,“pwke” 是一个子序列,不是子串。
示例 4:

输入: s = “”
输出: 0

提示:

0 <= s.length <= 5 * 10**4
s 由英文字母、数字、符号和空格组成

来源:力扣(LeetCode)
链接:(https://leetcode-cn.com/problems/longest-substring-without-repeating-characters)

class Solution(object):
    def lengthOfLongestSubstring(self, s):
        """
        :type s: str
        :rtype: int
        """
        start = -1
        max = 0
        d = {}

        for i in range(len(s)):
            # s[i] in d
            if s[i] in d and d[s[i]] > start:
                start = d[s[i]]
                d[s[i]] = i
            # s[i] not in d
            else:
                d[s[i]] = i
                if i - start > max:
                    max = i - start
        return max
### 深度相机与彩色相机对齐方法 (D2C) #### 理论基础 为了实现深度相机与彩色相机之间的有效对齐,需要考虑两者的几何关系和时间同步。校准过程主要包括内外参数估计、畸变矫正以及终的空间变换矩阵求解[^1]。 #### 实现步骤 ##### 数据收集 获取一组由同一场景下的深度图像和对应的RGB图像组成的配对样本集。这些样本应尽可能覆盖整个视场范围,并包含同距离和平面角度的对象实例。 ##### 内外参标定 利用标准棋盘格或其他已知模式作为参照物来执行单独的内部参数(焦距f_x,f_y; 主点坐标c_x,c_y)和外部旋转平移向量(R,t) 的估算工作。这一步骤可以借助OpenCV库中的`cv::calibrateCamera()`函数完成[^3]。 ```cpp // C++ code snippet using OpenCV for camera calibration std::vector<std::vector<cv::Point3f>> objectPoints; std::vector<std::vector<cv::Point2f>> imagePoints; bool success = cv::calibrateCamera(objectPoints, imagePoints, imageSize, K, distCoeffs, rvecs, tvecs); if (!success){ std::cerr << "Calibration failed." << std::endl; } ``` ##### 畸变修正 根据上一步得到的结果调整原始图片以消除镜头引起的失真效应。具体来说就是应用反向映射算法将理想位置上的像素值重新分配给实际观测到的位置。 ##### 变换矩阵计算 当两个摄像机都经过充分校正之后,则可通过共同观察某些特征点的方式建立两者间的刚体转换模型——即寻找能够使一对对应点之间误差小化的R|t组合。该操作同样可以在OpenCV框架下轻松达成: ```python import numpy as np import cv2 # Assuming we have matched points from both cameras stored in pts_depth and pts_rgb lists. E, mask = cv2.findEssentialMat(pts_depth, pts_rgb, focal=K[0][0], pp=(K[0][2], K[1][2])) _, R, t, _ = cv2.recoverPose(E, pts_depth, pts_rgb, focal=K[0][0], pp=(K[0][2], K[1][2])) transformation_matrix = np.hstack((R, t)) print(f"Transformation matrix:\n{transformation_matrix}") ``` 上述代码片段展示了如何使用Python版本的OpenCV来进行本质矩阵E及其分解后的旋转矩阵R和平移矢量t的计算。后构建了一个4×4大小的整体变换阵列用于后续处理阶段。 #### 应用案例 一旦完成了以上所有准备工作,在实际部署过程中就可以依靠预先训练好的神经网络或者其他机器学习工具辅助完成更复杂的任务,比如三维重建或是增强现实效果渲染等[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值