目录
二叉树的递归遍历:https://blog.youkuaiyun.com/weixin_51450101/article/details/122742243?spm=1001.2014.3001.5501
1. 直接实现栈操作方法
1.1 先序遍历
/*先序遍历二叉树的非递归算法(直接实现栈操作)*/
void PreOrder(BiTree bt) {
//s[m]表示栈,top表示栈顶指针
BiTNode* s[Stack_Size];
int top = 0;
BiTNode* p = bt;
do {
while (p != NULL) {
if (top > Stack_Size)
return;
printf("%c ", p->data);
top = top + 1;
s[top] = p;
p = p->LChild;
}
if (top != 0) {
p = s[top];
top = top - 1;
p = p->RChild;
}
} while (p != NULL || top != 0);
}
1.2 中序遍历
/*中序遍历二叉树的非递归算法(直接实现栈操作)*/
void InOrder(BiTree bt) {
//s[m]表示栈,top表示栈顶指针
BiTNode* s[Stack_Size];
int top = 0;
BiTNode* p = bt;
do {
while (p != NULL) {
if (top > Stack_Size)
return;
top = top + 1;
s[top] = p;
p = p->LChild;
}
if (top != 0) {
p = s[top];
top = top - 1;
printf("%c ", p->data);
p = p->RChild;
}
} while (p != NULL || top != 0);
}
1.3 后序遍历
/*后序遍历二叉树的非递归算法(直接实现栈操作)*/
void PostOrder(BiTree bt) {
//s[m]表示栈,top表示栈顶指针
BiTNode* s[Stack_Size];
int top = 0;
BiTNode* p = bt, * q = NULL;
while (p != NULL || top != 0) {
if (p != NULL) {
if (top > Stack_Size)
return;
top = top + 1;
s[top] = p;
p = p->LChild;
}
else {
p = s[top];
if (p->RChild == NULL || p->RChild == q) {
//无右孩子结点或右孩子结点已遍历过
printf("%c ", p->data);
q = p;
top = top - 1;
p = NULL;
}
else
p = p->RChild;
}
}
}
1.4 完整实现代码
# include<stdio.h>
# include<malloc.h>
# define Stack_Size 50
/*二叉树的链式存储结构*/