文章目录
传统数据库在联机事务处理(OLTP)中获得了较大的成功,但是对管理人员的决策分析要求却无法满足。因为管理人员希望对组织中的大量数据进行分析,了解组织业务的发展趋势,而传统的数据库中只能保留当前的管理信息,缺乏决策分析所需要的大量的历史信息。为了满足管理人员的决策分析需要,在数据库基础上产生了能满足决策分析需要的数据环境—>数据仓库(DataWarehouse, DW)。两者差异如下:
1. 数据仓库基础知识
1.1 数据仓库的基本特性
数据仓库有这样一些重要的特性:面向主题的、数据是集成的、数据是相对稳定的、数据是反映历史变化的。
1)面向主题
数据仓库中数据是面向主题进行组织的。从信息管理的角度来看,主题就是一个较高的管理层次上对信息系统中数据按照某一具体的管理对象进行综合、归类所形成的分析对象。从数据组织的角度来看,主题就是一些数据集合,这些数据集合对分析对象进行了比较完整的、一致的数据描述,这种数据描述不仅涉及数据自身,还涉及数据间的联系。
数据仓库的创建使用都是围绕主题实现的,因此,必须了解如何按照决策分析来抽取主题,所抽取的主题应该包含哪些数据内容,这些数据应该如何组织。在进行主题抽取时,必须按照决策分析对象进行。
2)数据是集成的
数据仓库的集成性是指根据决策分析的要求,将分散于各处的原数据进行抽取、筛选、清理、综合等集成工作,使数据仓库中的数据具有集成性。数据仓库所需要的数据不像业务处理系统那样直接从业务发生地获取数据。
数据仓库在从业务处理系统那里获取数据时,并不能将原数据库中的数据直接加载到数据仓库中,而要进行 一系列的数据预处理。即从原数据库中挑选出数据仓库所需要的数据,然后将来自不同数据库中的数据按某一标准进行统一,如将数据源中数据的单位、字长与内容统一起来,将源数据中字段的同名异义、异名同义现象消除,然后将源数据加载到数据仓库,并将数据仓库中的数据进行某种程度的综合,进行概括和聚集的处理。
3)数据是相对稳定的
数据仓库的数据主要是供决策分析之用,所涉及的数据操作主要是数据查询, 一般情况下并不进行修改操作。数据仓库的数据反映的是一段相当长的时间内历史数据的内容,是不同时间的数据库快照的集合,以及基于这些快照进行统计、综合和重组的导出数据,而不是联机处理的数据。
4)数据是反映历史变化的
数据仓库中数据的相对稳定是针对应用来说