tensorflow07——使用tf.keras中的Sequential搭建神经网络——六步法——鸢尾花数据集分类

使用tf.keras中的Sequential搭建神经网络
六步法——鸢尾花数据集分类

01 导入相关包
02 导入数据集,打乱顺序
03 建立Sequential模型
04 编译——确定优化器,损失函数,评测指标(用哪一种准确率)
05 训练模型——把各项参入填入模型
06 总结——打印网络结构


# 01
import tensorflow as tf
from sklearn import datasets
import numpy as np

# 02
x_train = datasets.load_iris().data
y_train = datasets.load_iris().target
# 测试集可以在此处按照上述方法划分
# 本案例把测试集放到训练过程fit中,按照比例直接从训练集中划分(validation_split)

# 乱序步骤
np.random.seed(116)
np.random.shuffle(x_train)
np.random.seed(116)
np.random.shuffle(y_train)
tf.random.set_seed(116)

# 03
model = tf.keras.models.Sequential([
    # 定义全连接层
    tf.keras.layers.Dense(3,activation='softmax',kernel_regularizer=tf.keras.regularizers.l2())
])

# 04
model.compile(
    optimizer=tf.keras.optimizers.SGD(lr=0.1),
    loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits
Tensorflow2.1中的tf.keras.sequential是一种创建顺序模型的方法。顺序模型是最简单的神经网络模型,也是最常用的模型。在这个方法中,我们可以将一系列的层按照顺序添加到模型中。 首先,我们需要导入Tensorflowtf.keras库。接下来,我们可以使用tf.keras.sequential()函数创建一个空的顺序模型。 接下来,我们可以使用add()方法依次添加各个层到模型中。例如,我们可以使用Dense层添加全连接层,使用Conv2D层添加卷积层,使用MaxPooling2D层添加池化层等。每个层都可以设置不同的参数,例如激活函数、输入大小、输出大小等。 在添加完所有层之后,我们可以使用compile()方法配置模型的优化器、损失函数和评估指标。优化器用于定义模型的训练方式,损失函数用于定义模型的优化目标,评估指标用于评估模型的性能。 最后,我们可以使用fit()方法来训练模型。在fit()方法中,我们需要传入训练数据和标签,并设置一些参数,例如训练轮数、批大小等。训练完成后,我们可以使用evaluate()方法评估模型在测试数据上的性能,使用predict()方法对新数据进行预测。 总而言之,tf.keras.sequentialTensorflow2.1中创建顺序模型的一种方法,它可以方便地添加、配置和训练各种神经网络层,并用于解决各种机器学习和深度学习任务。它是一种非常有用且易于使用的工具。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Fortunate.F

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值