Python学习笔记29:进阶篇(十八)常见标准库使用之质量控制中的数据清洗

前言

本文是根据python官方教程中标准库模块的介绍,自己查询资料并整理,编写代码示例做出的学习笔记。

根据模块知识,一次讲解单个或者多个模块的内容。

教程链接:https://docs.python.org/zh-cn/3/tutorial/index.html

质量控制

质量控制(Quality Control, QC),主要关注于提高代码质量、确保数据准确性和程序稳定性。

数据质量

数据质量是指数据满足其预定用途所要求的准确性、完整性、一致性、及时性和有效性的程度。良好的数据质量是数据分析、决策支持以及模型训练等过程成功的基础。把控数据质量主要包括以下几个方面:

数据质量的要素:

  1. 准确性:数据是否正确无误,没有错误或偏差。
  2. 完整性:数据集中是否存在缺失值或丢失的信息。
  3. 一致性:数据内部及跨数据集之间是否存在矛盾或不匹配。
  4. 时效性:数据是否是最新的,能否反映当前状况。
  5. 有效性:数据是否符合预期的格式和范围,如日期格式正确、数值在合理范围内。
  6. 唯一性:记录是否有重复。
  7. 可追溯性:数据的来源和变更历史是否清晰可查。

如何把控数据质量:

  1. 数据验证规则:定义一套数据验证规则,比如字段格式、范围限制、唯一性约束等,并在数据输入时或定期进行检查。
  2. 数据清洗:使用Python中的Pandas等库进行数据清洗,包括处理缺失值、去除重复数据、纠正错误数据等。
  3. 数据质量报告:定期生成数据质量报告,包括数据概况、缺失值统计、异常值检测等,以便监控数据质量变化。
  4. 自动化检查:利用脚本或工具自动化执行数据质量检查任务,提高效率并减少人为错误。
  5. 数据治理:建立数据治理框架,明确数据责任人,制定数据管理策略和流程,确保数据从源头到应用的每个环节都有质量控制。
  6. 用户反馈循环:鼓励数据使用者反馈数据问题,建立快速响应机制,及时修正数据错误。
  7. 持续监控:实施数据质量监控系统,对关键指标进行实时或定期监控,一旦发现数据质量问题立即报警并采取措施。

通过上述方法,可以在Python中有效地把控数据质量,确保数据分析和决策基于可靠的数据基础之上。

数据清洗

数据清洗是数据预处理的关键步骤,旨在识别并纠正数据集中的错误、不完整、不准确或无关的部分,以提升数据质量,确保后续分析或建模的准确性。
在Python中,数据清洗通常借助pandas库完成。

示例
  1. 打开文件,read_xxx()。常用的入参就是文件路径和编码,如过有用到其他参数的用法,临时再学就好了。
import pandas as pd

# 打开一个名为"test.csv"的文件,没有就新建一个,我就是新建的
df = pd.read_csv('test.csv', encoding='gbk')

pd模块中还有很多read开头的函数,自行尝试。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值